On sofic groupoids and their full groups
Tài liệu tham khảo
Anantharaman-Delaroche, 2000, Amenable Groupoids, vol. 36
Bowen, 2014, Entropy theory for sofic groupoids I: the foundations, J. Anal. Math., 124, 149, 10.1007/s11854-014-0030-9
Conley, 2013, Ultraproducts of measure preserving actions and graph combinatorics, Ergod. Theory Dyn. Syst., 33, 334, 10.1017/S0143385711001143
Dye, 1963, On groups of measure preserving transformations. II, Amer. J. Math., 85, 551, 10.2307/2373108
Dykema, 2014, Sofic dimension for discrete measured groupoids, Trans. Amer. Math. Soc., 366, 707, 10.1090/S0002-9947-2013-05987-9
Elek, 2015, Full groups and soficity, Proc. Amer. Math. Soc., 143, 1943, 10.1090/S0002-9939-2014-12403-8
Elek, 2010, Sofic equivalence relations, J. Funct. Anal., 258, 1692, 10.1016/j.jfa.2009.10.013
Feldman, 1977, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc., 234, 289, 10.1090/S0002-9947-1977-0578656-4
Feldman, 1989, Subrelations of ergodic equivalence relations, Ergod. Theory Dyn. Syst., 9, 239, 10.1017/S0143385700004958
Giordano, 2007, Some extremely amenable groups related to operator algebras and ergodic theory, J. Inst. Math. Jussieu, 6, 279, 10.1017/S1474748006000090
Gromov, 1999, Endomorphisms of symbolic algebraic varieties, J. Eur. Math. Soc., 1, 109, 10.1007/PL00011162
Ivanov
Kechris, 1995, Classical Descriptive Set Theory, vol. 156
Kechris, 2010, Global Aspects of Ergodic Group Actions, vol. 160
Kida, 2014, Invariants of orbit equivalence relations and Baumslag–Solitar groups, Tohoku Math. J. (2), 66, 205, 10.2748/tmj/1404911861
Ozawa
Păunescu, 2011, On sofic actions and equivalence relations, J. Funct. Anal., 261, 2461, 10.1016/j.jfa.2011.06.013
Păunescu, 2014, A convex structure on sofic embeddings, Ergod. Theory Dyn. Syst., 34, 1343, 10.1017/etds.2012.193
