On smoothing properties of the Bergman projection
Tài liệu tham khảo
Barrett, 1992, Behavior of the Bergman projection on the Diederich-Fornæss worm, Acta Math., 168, 1, 10.1007/BF02392975
Berndtsson, 2000, A Sobolev mapping property of the Bergman kernel, Math. Z., 235, 1, 10.1007/s002090000099
Błocki, 2005, The Bergman metric and the pluricomplex Green function, Trans. Am. Math. Soc., 357, 2613, 10.1090/S0002-9947-05-03738-4
Błocki, 2014, Cauchy-Riemann meet Monge-Ampère, Bull. Math. Sci., 4, 433, 10.1007/s13373-014-0058-2
Catlin, 1981, Boundary behavior of holomorphic functions on pseudoconvex domains, J. Differ. Geom., 15, 605, 10.4310/jdg/1214435847
Charpentier, 2015, On estimates for weighted Bergman projections, Proc. Am. Math. Soc., 143, 5337, 10.1090/proc/12660
Chen, 2014, Weighted Bergman spaces and the ∂‾-equation, Trans. Am. Math. Soc., 366, 4127, 10.1090/S0002-9947-2014-06113-8
Chen, 2017, Bergman kernel and hyperconvexity index, Anal. PDE, 10, 1429, 10.2140/apde.2017.10.1429
Chen, 2018, A degenerate Donnelly-Fefferman theorem and its applications, vol. 246, 73
Chen, 2018, Smoothing properties of the Friedrichs operator on Lp spaces, Int. J. Math., 29, 10.1142/S0129167X18500040
Diederich, 1977, Pseudoconvex domains: an example with nontrivial Nebenhülle, Math. Ann., 225, 275, 10.1007/BF01425243
Donnelly, 1983, L2-cohomology and index theorem for the Bergman metric, Ann. Math. (2), 118, 593, 10.2307/2006983
Edholm, 2017, Bergman subspaces and subkernels: degenerate Lp mapping and zeroes, J. Geom. Anal., 27, 2658, 10.1007/s12220-017-9777-4
Fornaess, 1987, Lectures on Counterexamples in Several Complex Variables, vol. 33
Harrington, 2008, The order of plurisubharmonicity on pseudoconvex domains with Lipschitz boundaries, Math. Res. Lett., 15, 485, 10.4310/MRL.2008.v15.n3.a8
Herbig
Herbig, 2014, Duality of holomorphic function spaces and smoothing properties of the Bergman projection, Trans. Am. Math. Soc., 366, 647, 10.1090/S0002-9947-2013-05827-8
Herbort, 1983, Logarithmic growth of the Bergman kernel for weakly pseudoconvex domains in C3 of finite type, Manuscr. Math., 45, 69, 10.1007/BF01168581
Krantz, 2008, Analysis and geometry on worm domains, J. Geom. Anal., 18, 478, 10.1007/s12220-008-9021-3
Pasternak-Winiarski, 1990, On the dependence of the reproducing kernel on the weight of integration, J. Funct. Anal., 94, 110, 10.1016/0022-1236(90)90030-O
Range, 1981, A remark on bounded strictly plurisubharmonic exhaustion functions, Proc. Am. Math. Soc., 81, 220, 10.1090/S0002-9939-1981-0593461-7
Thuc, 2018, A note on L2-boundary integrals of the Bergman kernel, Int. J. Math., 29, 10.1142/S0129167X18710015