On series of sectorial forms

Journal of Evolution Equations - Tập 14 - Trang 29-47 - 2013
C. J. K. Batty1, A. F. M. ter. Elst2
1St. John's College, University of Oxford, Oxford, UK
2Department of Mathematics, University of Auckland, Auckland, New Zealand

Tóm tắt

We prove a convergence theorem for partial sums of sectorial forms with vertex zero and a common semi-angle. As an example, we prove an absorption theorem for sectorial forms.

Tài liệu tham khảo

Arendt W., ter Elst A. F. M.: Sectorial forms and degenerate differential operators. J. Operator Theory 67, 33–72 (2012) Arendt, W., Elst, A. F. M. ter, Kennedy, J. B. and Sauter, M., The Dirichlet-to-Neumann operator via hidden compactness. J. Funct. Anal. (2013). To appear. Bré, H., Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies 5. North-Holland Publishing Co., 1973. Notas de Mathemática (50). Edmunds, D. E. and Evans, W. D., Spectral theory and differential operators. Oxford Mathematical Monographs. Oxford University Press, Oxford etc., 1987. Fillmore P. A., Williams J. P.: On operator ranges. Adv. Math. 7, 254–281 (1971) Kato, T., Trotter’s product formula for an arbitrary pair of self-adjoint contraction semigroups. In Topics in functional analysis, Adv. in Math. Suppl. Stud. 3. Academic Press, New York, 1978, 185–195. Kato, T., Perturbation theory for linear operators. Second edition, Grundlehren der mathematischen Wissenschaften 132. Springer-Verlag, Berlin etc., 1980. Ouhabaz E.-M.: Second order elliptic operators with essential spectrum [0,∞) on L p. Comm. Partial Differential Equations 20, 763–773 (1995) Ouhabaz, E.-M., Analysis of heat equations on domains, vol. 31 of London Mathematical Society Monographs Series. Princeton University Press, Princeton, NJ, 2005. Showalter, R. E., Monotone operators in Banach space and nonlinear partial differential equations. Mathematical Surveys and Monographs 49. American Mathematical Society, Providence, RI, 1997. Simon B.: A canonical decomposition for quadratic forms with applications to monotone convergence theorems. J. Funct. Anal. 28, 377–385 (1978)