On sequences preserving q-Gevrey asymptotic expansions

Alberto Lastra1, Sławomir Michalik2
1Departamento de Física y Matemáticas, Alcalá de Henares, Universidad de Alcalá, Madrid, Spain
2Faculty of Mathematics and Natural Sciences, College of Science, Cardinal Stefan Wyszyński University, Warsaw, Poland

Tóm tắt

The modification of the coefficients of formal power series is analyzed in order that such variation preserves q-Gevrey asymptotic properties, in particular q-Gevrey asymptotic expansions. A characterization of such sequences is determined, providing a handy tool in practice. The sequence of q-factorials is proved to preserve q-Gevrey asymptotic expansions.

Từ khóa


Tài liệu tham khảo

Balser, W.: Formal power series and linear systems of meromorphic ordinary differential equations. In: Universitext. Springer, New York (2000) Balser, W., Yoshino, M.: Gevrey order of formal power series solutions of inhomogeneous partial differential equations with constant coefficients. Funkcial. Ekvac. 53(3), 411–434 (2010) di Vizio, L., Zhang, C.: On \(q\)-summation and confluence. Ann. Inst. Fourier 59(1), 347–392 (2009) di Vizio, L., Ramis, J.-P., Sauloy, J., Zhang, C.: Équations aux \(q\)-différences. Gaz. Math. Soc. Math. Fr. 96, 20–49 (2003) Dreyfus, T.: Building meromorphic solutions of q-difference equations using a Borel–Laplace summation. Int. Math. Res. Not. 2015(15), 6562–6587 (2015) Dreyfus, T., Eloy, A.: \(q\)-Borel–Laplace summation for \(q\)-difference equations with two slopes. J. Differ. Equ. Appl. 22(10), 1501–1511 (2016) Dreyfus, T., Lastra, A., Malek, S.: On the multiple-scale analysis for some linear partial q-difference and differential equations with holomorphic coefficients. Adv. Differ. Equ. 2019, 1–42 (2019) Ernst, T.: A Comprehensive Treatment of \(q\)-Calculus. Birkhäuser, Basel (2012) Gasper, G., Rahman, M.: Basic Hypergeometric Series. Cambridge University Press, Cambridge (2004) Ichinobe, K., Michalik, S.: On the summability and convergence of formal solutions of linear \(q\)-difference–differential equations with constant coefficients. Math. Ann. (2023). https://doi.org/10.1007/s00208-023-02672-0 Jiménez-Garrido, J., Kamimoto, S., Lastra, A., Sanz, J.: Multisummability in Carleman ultraholomorphic classes by means of nonzero proximate orders. J. Math. Anal. Appl. 472(1), 627–686 (2019) Lastra, A., Malek, S.: On \(q\)-Gevrey asymptotics for singularly perturbed \(q\)-difference-differential problems with an irregular singularity. Abstr. Appl. Anal. 2012, 860716 (2012) Lastra, A., Malek, S.: On parametric multilevel \(q\)-Gevrey asymptotics for some linear \(q\)-difference-differential equations. Adv. Differ. Equ. 2015, 1–52 (2015) Lastra, A., Malek, S.: On multiscale Gevrey and \(q\)-Gevrey asymptotics for some linear \(q\)-difference differential initial value Cauchy problems. J. Differ. Equ. Appl. 23(8), 1397–1457 (2017) Lastra, A., Malek, S., Sanz, J.: On \(q\)-asymptotics for linear \(q\)-difference–differential equations with Fuchsian and irregular singularities. J. Differ. Equ. 252(10), 5185–5216 (2012) Lastra, A., Malek, S., Sanz, J.: Strongly regular multi-level solutions of singularly perturbed linear partial differential equations. Results Math. 70(3–4), 581–614 (2016) Lastra, A., Michalik, S., Suwińska, M.: Summability of formal solutions for some generalized moment partial differential equations. Results Math. 76(1), 22 (2021) Lastra, A., Michalik, S., Suwińska, M.: Estimates of formal solutions for some generalized moment partial differential equations. J. Math. Anal. Appl. 500(1), 125094 (2021) Lastra, A., Michalik, S., Suwińska, M.: Summability of formal solutions for a family of generalized moment integro-differential equations. Fract. Calc. Appl. Anal. 24, 1445–1476 (2021) Lastra, A., Michalik, S., Suwińska, M.: Multisummability of formal solutions of a family of generalized singularly perturbed moment differential equations. Results Math. 78(1), 49 (2023) Loday-Richaud, M.: Divergent series, summability and resurgence. II. In: Simple and Multiple Summability, Lecture Notes in Mathematics, vol. 2154. Springer (2016) Malek, S.: On parametric Gevrey asymptotics for a \(q-\)analog of some linear initial value problem. Funkcial. Ekvac. 60(1), 21–63 (2017) Malek, S.: On a partial \(q\)-analog of a singularly perturbed problem with Fuchsian and irregular time singularities. Abstr. Appl. Anal. 2020, 1–32 (2020) Malek, S.: Asymptotics and confluence for some linear \(q\)-difference–differential Cauchy problem. J. Geom. Anal. 32(3), 93 (2022) Marotte, F., Zhang, C.: Multisommabilité des séries entières solutions formelles d’une équation aux \(q-\)différences linéaire analytique. Ann. Inst. Fourier 50(6), 1859–1890 (2000) Ramis, J.-P., Sauloy, J., Zhang, C.: Local analytic classification of \(q\)-difference equations. In: Astérisque 355. Société Mathématique de France (SMF) VI, Paris (2013) Ramis, J.-P., Sauloy, J., Zhang, C.: Développement asymptotique et sommabilité des solutions des équations linéaires aux \(q\)-différences. C. R. Math. Acad. Sci. Paris 342(7), 515–518 (2006) Ruan, Y.B., Wen, Y.X.: Quantum K-theory and q-difference equations. Acta Math. Sin. Engl. Ser. 38, 1677–1704 (2022) Sanz, J.: Asymptotic analysis and summability of formal power series. In: Analytic, Algebraic and Geometric Aspects of Differential Equations, pp. 199–262. Trends Math, Birkhäuser/Springer, Cham (2017) Tahara, H.: \(q\)-analogues of Laplace and Borel transforms by means of \(q\)-exponentials. Ann. Inst. Fourier 67(5), 1865–1903 (2017) Tahara, H.: On the summability of formal solutions of some linear \(q\)-difference–differential equations. Funkc. Ekvacioj 63(2), 259–291 (2020) Tahara, H., Yamazawa, H.: \(q\)-analogue of summability of formal solutions of some linear \(q\)-difference–differential equations. Opuscula Math. 35(5), 713–738 (2015) Thilliez, V.: Division by flat ultradifferentiable functions and sectorial extensions. Results Math. 44, 169–188 (2003) Vinod, G.: Quantum groups, \(q\)-oscillators and \(q\)-deformed quantum mechanics. In: Sreelatha, K.S., Jacob, V. (eds.) Modern Perspectives in Theoretical Physics. Springer, Singapore (2021) Zhang, C.: Transformations de \(q\)-Borel–Laplace au moyen de la fonction thêta de Jacobi. C R Acad Sci Paris Sér I Math 331(1), 31–34 (2000) Zhang, C.: On Jackson’s \(q\)-gamma function. Aequationes Math. 62(1–2), 60–78 (2001)