On semiring complexity of Schur polynomials

computational complexity - Tập 27 - Trang 595-616 - 2018
Sergey Fomin1, Dima Grigoriev2, Dorian Nogneng3, Éric Schost4
1Department of Mathematics, University of Michigan, Ann Arbor, USA
2CNRS, Mathématiques, Université de Lille, Villeneuve d’Ascq, France
3LIX, École Polytechnique, Palaiseau Cedex, France
4Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada

Tóm tắt

Semiring complexity is the version of arithmetic circuit complexity that allows only two operations: addition and multiplication. We show that semiring complexity of a Schur polynomial $${s_\lambda(x_1,\dots,x_k)}$$ labeled by a partition $${\lambda=(\lambda_1\ge\lambda_2\ge\cdots)}$$ is bounded by $${O(\log(\lambda_1))}$$ provided the number of variables k is fixed.

Tài liệu tham khảo

Anders Björner, Michelle Wachs (1982) Bruhat order of Coxeter groups and shellability. Adv. in Math. 43(1): 87–100 Anders Björner, Michelle L. Wachs (1988) Generalized quotients in Coxeter groups. Trans. Amer. Math. Soc. 308(1): 1–37 Cy P. Chan, Vesselin Drensky, Alan Edelman, Raymond Kan & Plamen Koev (2008). On computing Schur functions and series thereof, preprint. James Demmel, Plamen Koev (2006) Accurate and efficient evaluation of Schur and Jack functions. Math. Comp. 75(253): 223–239 Sergey Fomin, Dima Grigoriev, Gleb Koshevoy (2016) Subtraction-free complexity, cluster transformations, and spanning trees. Found. Comput. Math. 16(1): 1–31 Dima Grigoriev, Gleb Koshevoy (2016) Complexity of tropical Schur polynomials. J. Symbolic Comput. 74: 46–54 Mark Jerrum, Marc Snir (1982) Some exact complexity results for straight-line computations over semirings. J. Assoc. Comput. Mach. 29(3): 874–897 Plamen Koev (2007) Accurate computations with totally nonnegative matrices. SIAM J. Matrix Anal. Appl. 29(3): 731–751 Ian G. Macdonald (2015). Symmetric functions and Hall polynomials. Oxford University Press, New York, 2nd edition. Hariharan Narayanan (2006) On the complexity of computing Kostka numbers and Littlewood-Richardson coefficients. J. Algebraic Combin. 24(3): 347–354 Robert A. Proctor (1982) Classical Bruhat orders and lexicographic shellability. J. Algebra 77(1): 104–126 Claus-Peter Schnorr (1976) A lower bound on the number of additions in monotone computations. Theoret. Comput. Sci. 2(3): 305–315 Eli Shamir & Marc Snir (1977). Lower bounds on the number of multiplications and the number of additions in monotone computations. Technical Report RC-6757, IBM. Richard P. Stanley (1999) Enumerative combinatorics. Vol. 2. Cambridge University Press, Cambridge Volker Strassen (1972/73). Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten. Numer. Math. 20, 238–251. Volker Strassen (1973) Vermeidung von Divisionen. J. Reine Angew. Math. 264: 184–202 Leslie G. Valiant (1980) Negation can be exponentially powerful. Theoret. Comput. Sci. 12(3): 303–314 Michelle L. Wachs (2007). Poset topology: tools and applications. In Geometric combinatorics, volume 13 of IAS/Park City Math. Ser., 497–615. Amer. Math. Soc., Providence, RI.