On semilinear elliptic equations with indefinite nonlinearities
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosetti, A., Rabinowitz, P.: Dual variational methods in critical point theory and applications. J. Funct. Anal.14, 349?381 (1973)
Bandle, C., Pozio, M.A., Tesei, A.: Existance and uniqeness of solutions of nonlinear Neumann problems. Math. Z.199, 257?278 (1988)
Benci, V.: On critical point theory for indefinite functionals in the presence of symmetries. Trans. Am. Math. Soc.274, 533?572 (1982)
Berestycki, H., Capuzzo Dolcetta, I., Nirenberg, L.: In preparation
Brezis, H.: Some variational problems with lack of compactness. Proc. Symp. Pure Math. Am. Math. Soc. 1986, pp. 165?201
Brezis, H., Lieb, E.: A relation between pointwise convergence of functional. Proc. Am. Math. Soc.88, 468?490 (1983)
Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponent. Commun. Pure Appl. Math.36, 437?477 (1983)
Crandall, M., Rabinowitz, P.: Bifurcation, perturbation of simple Eigenvalues and linearized stability. Arch. Ration. Mech. Anal.52, 161?180 (1973)
Escobar, J.F., Schoen, R.M.: Conformal metrics with prescribed scalar curvature. Invent. Math.86, 243?254 (1986)
Fleckinger-Pellé, J.: Asymptotics of eigenvalues for some ?nondefinite? problems. (Lect Notes Math., vol. 1151, pp. 148?156) Berlin, Heidelberg, New York: Springer 1985
Kazdan, J.L., Warner, F.: Scalar curvature and conformal deformation of Riemannian structure. J. Differ. Geom.10, 113?134 (1975)
Ouyang, T.: On the positive solutions of semilinear elliptic equations?u + ?u + hu p =0 on compact manifolds, Part II. Indiana Univ. Math. J.40, 1083?1140 (1991)
Rabinowitz, P.H.: Minimax methods in critical points theory with applications to differential equations. C.B.M.S. Regional Conf. Math. Series. A.M.S., Providence 1986
Struwe, M.: Variational methods and applications to nonlinear partial differential equations and Hamiltonian systems. Berlin, Heidelberg, New York: Springer 1990.