On scalar metrics that maximize geodesic distances in the plane

Springer Science and Business Media LLC - Tập 41 - Trang 151-177 - 2010
Sergio Conti1, Ben Schweizer2
1Institut für Angewandte Mathematik, Universität Bonn, Bonn, Germany
2Fakultät für Mathematik, Technische Universität Dortmund, Dortmund, Germany

Tóm tắt

A Riemannian metric a in the plane together with a point $${A\subset \mathbb {R}^2}$$ induces a distance function d a (A, ·). We investigate the optimization problem searching a scalar metric a which maximizes the distance between A and a given set B. We find necessary conditions for optimal metrics which help to determine solutions a. In the case that the set B is a single point, we determine the optimal metric explicitly.

Tài liệu tham khảo

Acerbi, E., Buttazzo, G.: On the limits of periodic Riemannian metrics. J. Analyse Math., 43, 183–201 (1983/84) Ambrosio L., De Lellis C., Mantegazza C.: Line energies for gradient vector fields in the plane. Calc. Var. Partial Diff. Eqs. 9, 327–355 (1999) Bouchitté G., Buttazzo G.: Characterization of optimal shapes and masses through Monge-Kantorovich equation. J. Eur. Math. Soc. (JEMS) 3(2), 139–168 (2001) Bouchitté G., Buttazzo G., Seppecher P.: Shape optimization solutions via Monge-Kantorovich equation. C.R. Acad. Sci. Paris Sér. I Math. 324(10), 1185–1191 (1997) Braides A., Buttazzo G., Fragalà I.: Riemannian approximation of Finsler metrics. Asymptot. Anal. 31(2), 177–187 (2002) Brenier Y.: Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44(4), 375–417 (1991) Buttazzo G., Davini A., Fragalà I., Macià F.: Optimal Riemannian distances preventing mass transfer. J. Reine Angew. Math. 575, 157–171 (2004) Buttazzo G., Schweizer B.: Γ convergence of Hausdorff measures. J. Convex Anal. 12(1), 239–253 (2005) Caffarelli L.A., Feldman M., McCann R.J.: Constructing optimal maps for Monge’s transport problem as a limit of strictly convex costs. J. Amer. Math. Soc. 15(1), 1–26 (2002) (electronic) Conti S., Schweizer B.: Rigidity and gamma convergence for solid-solid phase transitions with SO(2) invariance. Comm. Pure Appl. Math. 59(6), 830–868 (2006) Conti S., Schweizer B.: A sharp-interface limit for a two-well problem in geometrically linear elasticity. Arch. Ration. Mech. Anal. 179(3), 413–452 (2006) DeSimone A., Kohn R.V., Müller S., Otto F.: A compactness result in the gradient theory of phase transitions. Proc. Roy. Soc. Edin. A 131, 833–844 (2001) Evans, L.C., Gangbo, W.: Differential equations methods for the Monge-Kantorovich mass transfer problem. Mem. Amer. Math. Soc. 137(653), viii+66 (1999) Jabin P.-E., Otto F., Perthame B.: Line-energy Ginzburg-Landau models: zero-energy states. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1, 187–202 (2002) Jin W., Kohn R.V.: Singular perturbation and the energy of folds. J. Nonlinear Sci. 10, 355–390 (2000) Kantorovich L.V.: On the transfer of masses. Dokl. Akad. Nauk. SSSR 37, 227–229 (1942) Villani C.: Topics in optimal transportation, volume 58 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2003)