On reduction of computational cost of imitation Monte Carlo algorithms for modeling rarefied gas flows

Mathematical Models and Computer Simulations - Tập 4 - Trang 187-202 - 2012
A. I. Khisamutdinov1, N. N. Velker2
1Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch, Russian Academy of Sciences, Siberia, Russia
2Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Siberia, Russia

Tóm tắt

This article describes Monte Carlo methods and algorithms for the Boltzmann equation for rarefied gases problems in the case of large-scale flow areas. We consider imitation or continuous-time Monte Carlo methods where frequencies of interactions of pairs of particles depend on the difference of the coordinates of particles. The question about reduction of computational costs of algorithms is examined using the specificity of the problem. First, algorithms of an approximated method are constructed, analyzed, and implemented. This method is obtained by using splitting (over groups of particles) of the operator in master equations system. Second, we investigate the fictitious collisions technique, where the upper bound for the number of interacting pairs is specified. The plane Poiseuille flow (in the field of external forces) problem, the heat transfer problem, and the temperature discontinuity propagation problem are numerically solved using the developed algorithms. Asymptotical estimates of the computational costs are confirmed with the data of the computational processes and the comparative properties of the later are fixed. The suggested algorithms of the method with splitting allow parallelization of a certain type.

Tài liệu tham khảo

Khisamutdinov, A. I., Ob imitatsionnom metode Monte-Karlo dlya modelirovaniya dinamiki razrezhennykh gazov (On Imitation Method of Monte-Carlo for Simulation of Dynamics of Rarefied Gases), Novosibirsk: VTs SO AN SSSR, 1985, no. 599, p. 17. Khisamutdinov, A. I., Imitatsionnoe statisticheskoe modelirovanie kineticheskogo uravneniya razrezhennykh gazov, Dokl. Akad. Nauk SSSR, 1988, vol. 302, no. 1, pp. 75–79. Khisamutdinov, A. I., Algoritmy s “raznovremennymi koordinatami” metodov Monte-Karlo dlya nelineinogo “sglazhennogo” uravneniya Bol’tsmana, Dokl. Akad. Nauk SSSR, 1991, vol. 316, pp. 289–293. Khisamutdinov, A. I., On Development of Continuous Time Monte Carlo Methods for Problems of Boltzmann Equation with External Forces, Transport Theory and Statistical Physics, 2004, vol. 33, no. 1, pp. 69–89. Khisamutdinov, A. I., On Some Properties of Markov Processes and Monte Carlo Methods for Inhomogeneous Boltzmann Equation, Russ. J. Numer. Anal. Math. Model., 2005, vol. 20, no. 2, pp. 131–160. Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford: Clarendon Press, 1994. Khisamutdinov, A. I., Priblizhennyi metod statisticheskogo modelirovaniya, ispol’zuyushchii slabuyu zavisimost’ podchastei (Approximated Method of Static Simulation Using Weak Dependence of Subparts), in Voprosy korrektnosti zadach analiza. IM SO AN SSSR, Novosibirsk, 1989, pp. 154–160. Khisamutdinov, A. I., On Connection Between “Continuous Time” and “Direct Simulation” Monte Carlo Methods for Boltzmann Equation and on Some New Approximate Methods, Monte Carlo Methods and Applications, VSP, 2000, vol. 6, no. 4, pp. 323–340. Ermakov, S., Metod Monte-Karlo i smezhnye voprosy (Monte-Carlo Method and Related Issues), Moscow: Nauka, 1971, p. 327. Koura, K., Null-Collision Technique in the Direct-Simulation Monte Carlo Method, Phys. Fluids, 1986, vol. 29, no. 11, pp. 3509–3511. Khisamutdinov, A. I. and Sidorenko, L. L., Ob algoritmakh metodov Monte-Karlo s nepreryvnym vremenem dlya kineticheskogo uravneniya razrezhennykh gazov (About Algorithms of Monte-Carlo Methods with Continuous Time for Kinetic Equation of Rarefied Gases), Novosibirsk: IM SO AN SSSR, 1989, no. 35. Khisamutdinov, A. I. and Sidorenko, L. L., et al., O trudoemkostyakh algoritmov metodov Monte-Karlo s nepreryvnym vremenem dlya uravneniya Bol’tsmana (About Complexities of Monte-Carlo Methods with Continuous Time for Boltzmann Equation), Novosibirsk: IM SO AN SSSR, 1991, no. 21. Ivanov, M. S. and Rogazinskii, S. V., Ekonomichnye skhemy pryamogo statisticheskogo modelirovaniya techenii razrezhennogo gaza, Mat. Model., 1989, vol. 1, no. 7, pp. 130–145. Khisamutdinov, A. I., Statisticheskoe modelirovanie odnogo tipa par sluchainykh velichin s ispol’zovaniem fiktivnykh skachkov (Statistic Simulation of Single Type of Pairs of Arbitrary Quantities Using Fictive Jumps), in ZhVM i MF, 2007, vol. 47, no. 1, pp. 162–173. Alejandro, L., On the Validity of Hydrodynamics in Plane Poiseuille Flows, Physica, 1997, vol. 240, pp. 255–267. Aoki, K., Sone, Y., Nishino, K., and Sugimoto, H., Numerical Analysis of Unsteady Motion of a Rarefied Gas Caused by Sudden Changes of Wall Temperature with Special Interest in the Propagation of a Discontinuity in the Velocity Distribution Function, Rarefied Gas Dynamics, edited by Beylich, A. E., Weinheim: VCH, 1991, pp. 222–231.