On real factorizations of symmetric circulant sparse matrices
Tóm tắt
For the matricesA mentioned in the headline we determine the limit points up to which there is possible a real factorization of the formA=QQ
T
. HereQ=(q
ij
) is a circulant matrix, where from the elementsq
ij
andq
ji
withi≠j always one element is vanishing.
Tài liệu tham khảo
Berg, L.: Solution of large linear systems with help of circulant matrices. ZAMM55, 439–441 (1975).
Berg, L.: Differenzengleichungen zweiter Ordnung mit Anwendungen. Berlin: VEB Deutscher Verlag der Wissenschaften 1979; Darmstadt: Steinkopff-Verlag 1980.
Evans, D. J., hadjidimos, A.: On the factorization of special symmetric periodic and nonperiodic quindiagnonal matrices. Computing21, 259–266 (1979).
Guenther, R.: A transform method for solving certain systems of linear algebraic equations. Computing8, 13–18 (1971).
Hintze, K.: Zur Anwendung diskreter Filter für die Unterdrückung korrelierter Störungen im Empfangssignal von Schiffsradaranlagen. Dissertation (A), Wilhelm-Pieck-Universität Rostock, 1980.
Malešič, J.: An solving certain systems of linear equations with means of the discrete Fourier transform (Slovenian). Obzornik. Mat. Fiz.20, 168–173 (1973).