On rank-deficiency in direct Trefftz method for 2D Laplace problems
Tài liệu tham khảo
Boffi, 1999, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, Math Comput, 69, 121, 10.1090/S0025-5718-99-01072-8
Brebbia, 1977, Boundary element methods for potential problems, Appl Math Model, 1, 372, 10.1016/0307-904X(77)90046-4
Brebbia, 1992
Chen, 1999, On the irregular eigenvalues in wave radiation solutions using dual boundary element method
Chen, 2014, True and spurious eigensolutions of an elliptical membrane by using the nondimensional dynamic influence function method, J Vib Acoust, 136, 10.1115/1.4026354
Chen, 2002, On the rank-deficiency problems in boundary integral formulation using the fredholm alternative theorem and singular value decomposition technique
Chen, 2009, Fictitious frequency revisited, Eng Anal Bound Elem, 33, 1289, 10.1016/j.enganabound.2009.06.001
Chen, 2009, Applications of the modified Trefftz method for the Laplace equation, Eng Anal Bound Elem, 33, 137, 10.1016/j.enganabound.2008.05.008
Chen, 2009, The degenerate scale problem for the Laplace equation and plane elasticity in a multiply connected region with an outer circular boundary, Int J Solids Struct, 46, 2605, 10.1016/j.ijsolstr.2009.02.005
Cheung, 1989, Direct solution procedure for solution of harmonic problems using complete, non-singular, Trefftz functions, Commun Appl Numer Methods, 5, 159, 10.1002/cnm.1630050304
Cheung, 1991, Solution of Helmholtz equation by Trefftz method, Int J Numer Methods Eng, 32, 63, 10.1002/nme.1620320105
Christian, 1997, On the dirichlet problem for the two-dimensional biharmonic equation, Math Methods Appl Sci, 10, 885
Georgieva, 2016, New results on regularity and errors of harmonic interpolation using radon projections, J Comput Appl Math, 293, 73, 10.1016/j.cam.2015.02.056
Georgieva, 2013, Harmonic interpolation based on Radon projections along the sides of regular polygons, Central Eur J Math, 11, 609
Jaswon, 1963, Integral equation methods in potential theory. I, Proc R Soc Lond Ser A, 275, 23, 10.1098/rspa.1963.0152
Jin, 1991
Jin, 1995, Trefftz direct method, Adv Eng Softw, 24, 65, 10.1016/0965-9978(95)00059-3
Jin, 1990, Application of the Trefftz method in plane elasticity problems, Int J Numer Methods Eng, 30, 1147, 10.1002/nme.1620300605
Jin, 1993, Trefftz method for Kirchhoff plate bending problems, Int J Numer Methods Eng, 36, 765, 10.1002/nme.1620360504
Jirousek, 1992, Hybrid Trefftz plane elasticity elements with p-method capabilities, Int J Numer Methods Eng, 35, 1443, 10.1002/nme.1620350705
Kita, 1995, Trefftz method: an overview, Adv Eng Softw, 24, 3, 10.1016/0965-9978(95)00067-4
Kita, 1999, Application of a direct Trefftz method with domain decomposition to 2D potential problems, Eng Anal Bound Elem, 23, 539, 10.1016/S0955-7997(99)00010-7
Ku, 2015, Numerical solution of three-dimensional Laplacian problems using the multiple scale Trefftz method, Eng Anal Bound Elem, 50, 157, 10.1016/j.enganabound.2014.08.007
Kupradze, 1964, The method of functional equations for the approximate solution of certain boundary value problems (in Russian), USSR Comput Math Math Phys, 4, 683, 10.1016/0041-5553(64)90006-0
Liu, 2007, An effectively modified direct Trefftz method for 2D potential problems considering the domain’s characteristic length, Eng Anal Boundary Elements, 31, 983, 10.1016/j.enganabound.2007.04.006
Liu, 2013, Numerical solution of the Laplacian Cauchy problem by using a better postconditioning collocation Trefftz method, Eng Anal Bound Elem, 37, 74, 10.1016/j.enganabound.2012.08.008
Portela, 1997, Programming Trefftz boundary elements, Adv Eng Softw, 28, 509, 10.1016/S0965-9978(97)00035-5
Portela, 1997, Trefftz boundary element method for domains with slits, Eng Anal Bound Elem, 20, 299, 10.1016/S0955-7997(97)00047-7
Schaback, 2008, An adaptive numerical solution of MFS systems, 1
Symm, 1963, Integral Equation Methods in Potential Theory. II, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 275, 33
Trefftz, 1926, Ein Gegenstück zum Ritzschen Verfahren, 131
Wugen, 2003, Trefftz direct method and its relative problems, Chin J Rock Mech Eng, 22, 115
Yeih, 2006, Numerical instability of the direct Trefftz method for Laplace problems in a 2D finite domain, Int J Appl Math Mech, 2, 41
Zielinski, 1985, Generalized finite element analysis with T-complete boundary solution functions, Int J Numer Meth Engng, 21, 509, 10.1002/nme.1620210310