On quasi-Monte Carlo integrations

Mathematics and Computers in Simulation - Tập 47 - Trang 103-112 - 1998
I.M. Sobol1
1Institute for Mathematical Modelling of the Russian Academy of Sciences, 4 Miusskaya SquareMoscow 125047Russia

Tài liệu tham khảo

Bratley, 1993, Implementation and tests of low-discrepancy sequences, ACM Trans. Model. Comput. Simulation, 2, 195, 10.1145/146382.146385 Doroshkevich, 1987, Monte Carlo evaluation of integrals encountered in nonlinear theory of gravitational instability, USSR Comput. Math. Math. Phys., 27, 200, 10.1016/0041-5553(87)90068-1 M. Drmota, R.F. Tichy, Sequences, Discrepancies and Application, Lecture Notes in Mathematics, vol. 1651, Springer, New York, 1997 Faure, 1982, Discrépance de suites associées à un système de numération (en dimension s), Acta Arithm., 41, 337, 10.4064/aa-41-4-337-351 Halton, 1960, On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals, Numer. Math., 2, 84, 10.1007/BF01386213 H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, SIAM, Philadelphia, PA, 1992 Niederreiter, 1995, Low-discrepancy sequences obtained from algebraic function fields over finite fields, Acta Arithm., 72, 281, 10.4064/aa-72-3-281-298 S.H. Paskov, J.F. Traub, Faster valuation of financial derivatives, J. Portfolio Manag. (1995) 113–120 Radović, 1996, Quasi-Monte Carlo methods for numerical integration: Comparison of different low discrepancy sequences, Monte Carlo Methods Appl., 2, 1, 10.1515/mcma.1996.2.1.1 I.M. Sobol′, An exact estimate of the error in multidimensional quadrature formulae for functions of the classes W̃1 and H̃1, USSR Comput. Math. Math. Phys. 1 (1961) 228-240 Sobol′, 1967, On the distribution of points in a cube and the approximate evaluation of integrals, USSR Comput. Math. Math. Phys., 7, 86, 10.1016/0041-5553(67)90144-9 I.M. Sobol′, Multidimensional Quadrature Formulas and Haar Functions, Nauka, Moscow, 1969 (in Russian) Sobol′, 1976, Uniformly distributed sequences with additional uniformity properties, USSR Comput. Math. Math. Phys., 16, 236, 10.1016/0041-5553(76)90154-3 I.M. Sobol′, Points that Uniformly Fill a Multidimensional Cube, Znanie, Moscow, 1985 (in Russian); German trans. in: Punkte die einen mehrdimensionalen Würfel gleichmässig ausfüllen, Bericht N51, Univ. Kaiserslautern Technomathematik, 1991 Sobol′, 1990, Quasi-Monte Carlo methods,, Progress in Nucl. Energy, 24, 55, 10.1016/0149-1970(90)90022-W Sobol′, 1993, Asymmetric convergence of approximations of the Monte Carlo method, Comput. Math. Math. Phys., 33, 1391 Sobol′, 1995, Integration with quasirandom sequences: Numerical experience, Internat. J. Modern Phys. C, 6, 263, 10.1142/S0129183195000204