On quantum hybrid fractional conformable differential and integral operators in a complex domain
Tóm tắt
Từ khóa
Tài liệu tham khảo
Johnson, W.P.: An Introduction to q-analysis, American Mathematical Society, (2020), Print ISBN: 978-1-4704-5623-8
Jackson, F.H.: On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinburgh 46(2), 253–281 (1909)
Jackson, F.H.: On q-definite integrals. Quart. J. Pure Appl. Math. 41, 193–203 (1910)
Aouf, M.K., Seoudy, T.M.: “Convolution properties for classes of bounded analytic functions with complex order defined by q-derivative operator.” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 113.2 (2019): 1279–1288
Arif, Muhammad, Srivastava, H.M., Umar, Sadaf: “Some applications of a q-analogue of the Ruscheweyh type operator for multivalent functions.” Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 113.2 (2019): 1211–1221
Anderson, Douglas R., Onitsuka, Masakazu: Hyers-Ulam Stability for Quantum Equations of Euler Type. Discrete Dyn. Nat. Soc. 2020, (2020)
Usman, M., Ibrahim, M.S., Ahmed, J., Hussain, S.S., Moinuddin, M.: Quantum calculus-based volterra LMS for nonlinear channel estimation. In 2019 Second International Conference on Latest trends in Electrical Engineering and Computing Technologies (INTELLECT) (pp. 1-4). IEEE (2019, November)
Srivastava, H.M., Bansal, D.E.: Close-to-convexity of a certain family of q-Mittag–Leffler functions. J. Nonlinear Var. Anal 1(1), 61–69 (2017)
Srivastava, Hari M., Ahmad, Qazi Zahoor, Khan, Nasir, Khan, Nazar, Khan, Bilal: Hankel and toeplitz determinants for a subclass of q-starlike functions associated with a general conic domain. Mathematics 7, no. 2 (2019): 181
Mahmood, Shahid, Srivastava, Hari M., Khan, Nazar, Ahmad, Qazi Zahoor, Khan, Bilal, Ali: Upper bound of the third Hankel determinant for a subclass of q-starlike functions. Symmetry 11, no. 3 (2019): 347
Shi, Lei, Khan, Qaiser, Srivastava, Gautam, Liu, Jin-Lin, Arif, Muhammad: A study of multivalent q-starlike functions connected with circular domain. Mathematics 7(8), 670 (2019)
Ibrahim, Rabha W., Darus, Maslina: On a class of analytic functions associated to a complex domain concerning q-differential-difference operator. Adv. Differ. Equ. 2019(1), 515 (2019)
Srivastava, H.M.: Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran J. Sci. Technol. Trans. A Sci. (2020): 1-18
Ul-Haq, Miraj, Raza, Mohsan, Arif, Muhammad, Khan, Qaiser, Tang, Huo: q-analogue of differential subordinations. Mathematics 7(8), 724 (2019)
Ibrahim, R. W., Hadid, S. B., Momani, S.: Generalized Briot–Bouquet differential equation by a quantum difference operator in a complex domain. Int. J. Dyn. Control 1–10 (2020)
Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J.: A class of quantum Briot–Bouquet differential equations with complex coefficients. Mathematics 8(5), 794 (2020)
Ibrahim, R.W., Elobaid, R.M., Obaiys, S.J.: On sub-classes of analytic functions based on a quantum symmetric conformable differential operator with the application. Adv. Differ. Equ. 2020, 1–14 (2020)
Baleanu, D., Fernandez, A., Akgul, A.: On a fractional operator combining proportional and classical differintegrals. Mathematics 8.3 (2020): 360
Anderson, D.R., Ulness, D.J.: Newly defined conformable derivatives. Adv. Dyn. Syst. Appl 10(2), 109–137 (2015)
Duren, P.: Univalent Functions, Grundlehren der mathematischen Wissenschaften; 259 Springer-Verlag New York Inc. 1983. ISBN 0-387-90795-5. MR0708494
Srivastava, H.M., Owa, S.: Univalent Functions, Fractional calculus, and their applications, Halsted Press, John Wiley and Sons, New York. Brisbane, and Toronto, Chichester (1989)
Ibrahim, R. W., Jahangiri, Jay M.: Cloud computing center. “Conformable differential operator generalizes the Briot-Bouquet differential equation in a complex domain.” AIMS Math 4, 6: 1582-1595 (2019)
Miller, S.S., Mocanu, P.T.: Differential subordinations: theory and applications. CRC Press, Boca Raton (2000)
Ma W.C., Minda D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis, Tianjin, China, (1992): 19-23
Khatter, K., Ravichandran, V., Sivaprasad Kumar, S.: Starlike functions associated with exponential function and the lemniscate of Bernoulli. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 113, 1 (2019): 233–253
Kumar, V., Nak Eun C., Ravichandran, V., Srivastava, H. M.: Sharp coefficient bounds for starlike functions associated with the Bell numbers. Mathematica Slovaca 69, 5 (2019): 1053–1064
Singh, R., Singh, S.: Some sufficient conditions for univalence and starlikeness. In Colloq. Math. 2(47), 309–314 (1982)
Ruscheweyh, S.: Convolutions in geometric function theory. Presses University, Montreal (1982)
Jack, I.S.: Functions starlike and convex of order $$\alpha $$. J. Lond. Math. Soc. 3, 469–474 (1971)