On quantum field theory with invariant parameter
Tóm tắt
The Dirac-type quantum theory with invariant parameter is formulated in a way such that for particle states with positive frequencies and antiparticle states with negative frequencies the energy densities and probability densities all are positive. This consistent formulation of single-particle quantum theory for spin-1/2 is used as a basis for second quantization. The inclusion of an invariant parameter into quantum field theory leads us to describe antiparticles by states with negative frequencies. The correct signs for all physical quantities are achieved by a unified definition of mass, charge, and energy-momentum density operators as infinitesimal generators of the corresponding symmetries, of translations of the invariant parameter,U(1)-gauge transformations, and space-time translations, respectively. A quantum field theory of massive free spin-1/2 and spin-0 fields is obtained with antiunitary charge conjugation transformation and unitaryCPT transformation. The theory has a new discrete symmetry transformation which is interesting for the description of weak interactions.
Tài liệu tham khảo
J. R. Fanchi,Found. Phys. 23, 487 (1993);Parametrized Relativistic Quantum Theory (Kluwer, Dordrecht, 1993).
J. Schwinger,Phys. Rev. 82, 664 (1951).
B. S. DeWitt,Phys. Rep. 19, 295 (1975).
J. R. Fanchi,Phys. Rev. D 20, 3108 (1979).
L. Hostler,J. Math. Phys. 21, 2461 (1980);22, 2307 (1981).
R. Kubo,Nuovo Cimento 85A, 293 (1985).
M. Pavsie,Nuovo Cimento 104A, 1337 (1991).
J. E. Johnson,Phys. Rev. 181, 1755 (1969).
L. Hannibal,Int. J. Theor. Phys. 30, 1445 (1991).
A. B. Evans,Found. Phys. 20, 309 (1990).
D. M. Greenberger,J. Math. Phys. 11, 2329, 2341 (1970);15, 395, 406 (1974).
A. Kyprianidis,Phys. Rep. 155, 1 (1987).
L. P. Horwitz, R. I. Arshansky, and A. C. Elitzur,Found. Phys. 18, 1159 (1988).
D. Saad, L. P. Horwitz, and R. I. Arshansky,Found. Phys. 19, 1125 (1989).
J. R. Fanchi,Found. Phys. 24, 543 (1994).
L. Hannibal,Rep. Math. Phys. 33, 77 (1993).
L. Hannibal,Int. J. Theor. Phys. 30, 1431 (1991).
L. Mayants,The Enigma of Probability and Physics (Kluwer, Dordrecht, 1984).
T.-Y. Wu and W.-Y. Hwang,Relativistic Quantum Mechanics and Quantum Fields (World-Scientific, Singapore, 1991).
E. C. G. Stueckelberg,Helv. Phys. Acta 14, 588 (1941);15, 23 (1942).
R. P. Feynman,Phys. Rev. 74, 939 (1948). Feynman writes that J.A. Wheeler introduced him to this concept in 1941.
W. Pauli,Annales de l'Institut Henri Poincaré 6, 109 (1939).
A. Arensburg and L. P. Horwitz,Found. Phys. 22, 1025 (1992).
A. B. Evans,Found. Phys. 21, 633 (1991).
N. N. Bogolubov, A. A. Logunov, and I. T. Todorov,Introduction to Axiomatic Quantum Field Theory (Benjamin, London, 1975).
J. Glimm and A. Jaffe,Quantum Physics (Springer, New York, 1981).
M. Reed and B. Simon,Methods of Modern Mathematical Physics Vol II: Fourier Analysis, Self-Adjointness (Academic Press, New York, 1975).
R. F. Streater and A. S. Wightman,PCT, Spin & Statistics, and All That (Benjamin, New York, 1963).
A. S. Wightman and S. S. Schweber,Phys. Rev. 98, 812 (1955).
J. Schwinger,Phys. Rev. 82, 914 (1951).
J. D. Bjorken and S. D. Drell,Relativistic Quantum Fields (McGraw Hill, New York, 1965).
C. Itzykson and J. B. Zuber,Quantum Field Theory (McGraw Hill, New York, 1980).