On projection methods, convergence and robust formulations in topology optimization

Fengwen Wang1, Boyan Stefanov Lazarov1, Ole Sigmund1
1Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Lyngby, Denmark

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1:55–69

Amir O, Bendsoe MP, Sigmund O (2009) Approximate reanalysis in topology optimization. Int J Numer Methods Eng 78(12):1474–1491

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

Bendsøe MP, Sigmund O (2004) Topology optimization—theory, methods and applications. Springer, Berlin

Borel PI, Frandsen LH, Harpøth A, Kristensen M, Jensen JS, Sigmund O (2005) Topology optimised broadband photonic crystal Y-splitter. Electron Lett 41(2):69–71

Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

Bruns T, Tortorelli D (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

Díaz A, Sigmund O (1995) Checkerboard patterns in layout optimization. Struct Multidisc Optim 10:40–45

Guest J (2009) Topology optimization with multiple phase projection. Comput Methods Appl Mech Eng 199(1–4):123–135. doi:10.1016/j.cma.2009.09.023

Guest J, Prevost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on the perimeter. Struct Optim 11(1):1–11

Jensen JS, Sigmund O (2005) Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J Opt Soc Am B Opt Phys 22(6):1191–1198

Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3–4):203–226

Kawamoto A, Matsumori T, Yamasaki S, Nomura T, Kondoh T, Nishiwaki S (2010) Heaviside projection based topology optimization by a pde-filtered scalar function. Struct Multidisc Optim. doi:10.1007/s00158-010-0562-2

Kirsch U (2008) Reanalysis of structures. Springer, Berlin

Lazarov B, Sigmund O (2009) Sensitivity filters in topology optimisation as a solution to Helmholtz type differential equation. In: Proc. of the 8th world congress on structural and multidisciplinary optimization. Lisbon, Portugal

Lazarov B, Sigmund O (2010) Filters in topology optimizat ion based on Helmholtz type differential equations. Int J Numer Methods Eng. doi:10.1002/nme.3072

Luo J, Luo Z, Chen S, Tong L, Wang MY (2008) A new level set method for systematic design of hinge-free compliant mechanisms. Comput Methods Appl Mech Eng 198(2):318–331

Poulsen TA (2003) A new scheme for imposing a minimum length scale in topology optimization. Int J Numer Methods Eng 57(6):741–760

Sardan Ö, Petersen DH, Mølhave K, Sigmund O, Bøggild P (2008) Topology optimized electrothermal polysilicon microgrippers. Microelectron Eng 85:1096–1099. doi:10.1016/j.mee.2008.01.049

Sigmund O (1997) On the design of compliant mechanisms using topology optimization. Mech Struct Mach 25(4):493–524

Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidisc Optim 33(4–5):401–424

Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sin 25(2):227–239. doi:10.1007/s10409-009-0240-z

Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

Stainko R, Sigmund O (2007) Tailoring dispersion properties of photonic crystal waveguides by topology optimization. Waves Random Complex Media 17:477–489

Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

Wang F, Jensen J, Sigmund O (2010) Robust topology optimization of photonic crystal waveguides with tailored dispersion properties (submitted)

Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

Xu S, Cai Y, Cheng G (2010) Volume preserving nonlinear density filter based on heaviside funtions. Struct Multidisc Optim 41:495–505

Yoon GH, Sigmund O (2008) A monolithic approach for topology optimization of electrostatically actuated devices. Comput Methods Appl Mech Eng 197:4062–4075. doi:10.1016/j.cma.2008.04.004