On positive solutions of a reciprocal difference equation with minimum
Tóm tắt
Từ khóa
Tài liệu tham khảo
A.M. Amleh, J. Hoag and G. Ladas,A difference equation with eventually periodic solutions, Comput. Math. Appl.36 (10–12) (1998), 401–404.
H.M. El-Owaidy, A.M. Ahmed and M.S. Mousa, On asymptotic behaviour of the difference equation $$x_{n + 1} = \alpha + \frac{{x_{n - 1}^p }}{{x_n^p }}$$ , J. Appl. Math. & Computing12 (1–2) (2003), 31–37.
D.P. Mishev and W.T. Patula,A reciprocal Difference Equation with Maximum, Comput. Math. Appl.43 (2002), 1021–1026.
A.D. Mishkis,On some problems of the theory of differential equations with deviating argument, UMN 32:2 (194) (1977), 173–202.
E.P. Popov,Automatic regulation and control, Moscow (1966) (in Russian).
S. Stević, On the recursive sequence $$x_{n + 1} = - \frac{1}{{x_n }} + \frac{A}{{x_{n - 1} }}$$ , Int. J. Math. Math. Sci.27 (1) (2001), 1–6.
S. Stević, On the recursive sequencex n+1 =g(x n ,x n\t-1)/(A +x n ), Appl. Math. Lett.15 (2002), 305–308.
S. Stević, On the recursive sequencex n+1 =x n\t-1/g(x n ), Taiwanese J. Math.6 (3) (2002), 405–414.
S. Stević, On the recursive sequence $$x_{n + 1} = \frac{{\alpha + \beta x_{n - 1} }}{{1 + g(x_n )}}$$ , Indian J. Pure Appl. Math.33 (12) (2002), 1767–1774.
S. Stević, On the recursive sequence $$x_{n + 1} = \alpha _n + \frac{{x_{n - 1} }}{{x_n }}$$ , Dynam. Contin. Discrete Impuls. Systems10a (6) (2003), 911–917.
Z. Zhang, B. Ping and W. Dong,Oscillatory of unstable type second-order neutral difference equations, J. Appl. Math. & Computing9 No. 1 (2002), 87–100.
Z. Zhou, J. Yu and G. Lei,Oscillations for even-order neutral difference equations, J. Appl. Math. & Computing7 No. 3 (2000), 601–610.