On periodic p-adic generalized Gibbs measures for Ising model on a Cayley tree

Letters in Mathematical Physics - Tập 112 - Trang 1-18 - 2022
Muzaffar Rahmatullaev1, Akbarkhuja Tukhtabaev2
1Institute of Mathematics, Academy of Science, Tashkent, Uzbekistan
2Namangan State University, Namangan, Uzbekistan

Tóm tắt

In the present paper, we consider a p-adic Ising model on a Cayley tree of order three. The existence of $$G_k^{(2)}$$ -periodic non-translation-invariant p-adic generalized Gibbs measures of this model is investigated. Moreover, the boundedness of such kinds of measures is established, which yields the occurrence of a phase transition.

Tài liệu tham khảo

Ahmad, M.AKh., Liao, L.M., Saburov, M.: Periodic \(p\)-adic Gibbs measures of \(q\)-state Potts model on Cayley tree: the chaos implies the vastness of \(p\)-adic Gibbs measures. J. Stat. Phys. 171, 1000–1034 (2018) Areféva I. Ya., Dragovic, B., Frampton, P.H., Volovich, I.V.: The wave function of the Universe and \(p\)-adic gravity. Int. J. Modern Phys. A. 6, 4341–4358 (1991) Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V.: Application of \(p\)-adic analysis to models of spontaneous breaking of the replica symmetry. J. Phys. A: Math. Gen. 32, 8785–8791 (1999) Derrida, B., De Seze, L., Itzykson, C.: Fractal structure of zeros in hierarchical models. J. Stat. Phys. 33, 559–569 (1983) Dragovich, B., Khrennikov, A., Kozyrev, S.V., Volovich, I.V.: On \(p\)-adic mathematical physics. \(p\)-adic Numbers Ultramet. Anal. Appl. 1, 1–17 (2009) Dragovich, B., Khrennikov, AYu., Kozyrev, S.V., Volovich, I.V., Zelenov, E.I. (2017) \(p\) -adic mathematical physics: the first 30 years. \(p\)-Adic Numbers Ultramet. Anal. Appl. 9, 87–121 (2017) Eggarter, T.P.: Cayley trees, the Ising problem, and the thermodynamic limit. Phys. Rev. B 9, 2989–2992 (1974) Fan, A.H., Liao, L.M., Wang, Y.F., Zhou, D.: \(p\)-adic repellers in \(\mathbb{Q}_p\) are subshifts of finite type. C.R. Math. Acad. Sci Paris. 344, 219–224 (2007) Fisher, M.E.: The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597–616 (1974) Ganikhodjayev, N.N., Mukhamedov, F.M., Rozikov, U.A.: Existence of phase transition for the Potts \(p\)-adic model on the set \(\mathbb{Z} \). Theor. Math. Phys. 130(3), 425–431 (2002) Gandolfo, D., Rozikov, U., Ruiz, J.: On \(p\)-adic Gibbs measures for hard core model on a Cayley Tree. Markov Process Rel. Fields 18(4), 701–720 (2012) Khakimov, O.N.: On a generalized \(p\)-adic Gibbs measure for Ising model on trees. \(p\)-Adic Numbers Ultramet. Anal. Appl. 6(3), 207–217 (2014) Khamraev, M., Mukhamedov, F., Rozikov, U.: On uniqueness of Gibbs measure for \(p\)-adic \(\lambda \)-model on the Cayley tree. Lett. Math. Phys. 70, 17–28 (2004) Khrennikov, AYu.: Generalized probabilities taking values in non-Archimedean fields and in topological groups. Russ. J. Math. Phys. 14, 142–159 (2007) Khrennikov, AYu., Kozyrev, S.V., Zuniga-Galindo, W.A.: Ultrametric Pseudodifferential Equations and Applications. Cambridge Univ. Press (2018) Khrennikov, AYu., Ludkovsky, S.: Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields. Markov Process. Rel. Fields 9, 131–162 (2003) Khrennikov, AYu., Nilsson, M.: \(p\)-Adic Deterministic and Random Dynamical Systems. Kluwer, Dordreht (2004) Koblitz, N.: \(p\)-Adic Numbers, \(p\)-Adic Analysis, and Zeta-Functions. Springer, Berlin (1977) Lemmermeyer, F.: Reprocity Laws from Euler to Eisentein. Springer, Berlin (2000) Le Ny, A., Liao, L., Rozikov, U.: \(p\)-adic boundary laws and Markov chains on trees. Lett. Math. Phys. 110, 2725–2741 (2020) Marinary, E., Parisi, G.: On the \(p\)-adic five point function. Phys. Lett. B 203, 52–56 (1988) Mukhamedov, F.: On a recursive equation over a \(p\)-adic field. Appl. Math. Lett. 20, 88–92 (2007) Mukhamedov, F.: On \(p\)-adic quasi Gibbs measures for \(q+1\)-state Potts model on the Cayley tree. \(p\)-Adic Numbers Ultramet. Anal. Appl. 2, 241–251 (2010) Mukhamedov, F.: On dynamical systems and phase transitions for \(q+1\)-state \(p\)-adic Potts model on the Cayley tree. Math. Phys. Anal. Geom. 16, 49–87 (2013) Mukhamedov, F.: Renormalization method in \(p\)-adic \(\lambda \)-model on the Cayley tree. Int. J. Theor. Phys. 54, 3577–3595 (2015) Mukhamedov, F., Akin, H.: Phase transitions for \(p\)-adic Potts model on the Cayley tree of order three. J. Stat. Mech. P07014 (2013) Mukhamedov, F., Akin, H., Dogan, M.: On chaotic behavior of the \(p\)-adic generalized Ising mapping and its application. J. Differ. Eqs. Appl. 23(9), 1542–561 (2017) Mukhamedov, F., Khakimov, O.: On periodic Gibbs measures of \(p\)-adic Potts model on a Cayley tree. \(p\)-Adic Numbers Ultramet. Anal. Appl. 8(3), 225–235 (2016) Mukhamedov, F., Khakimov, O.: On Julia set and chaos in \(p\)-adic Ising model on the Cayley tree. Math. Phys. Anal. Geom. 20(23), 1–14 (2017) Mukhamedov, F., Khakimov, O.: Translation-invariant generalized \(p\)-adic Gibbs measures for the Ising model on Cayley trees. Math. Methods Appl. Sci. 44(16), 12302–12316 (2021) Mukhamedov, F., Khakimov, O.: On equation \(x^k=a\) over \(\mathbb{Q} _p\) and its applications. Izvestiya Math. 84, 348–360 (2020) Mukhamedov, F., Khakimov, O.: Chaotic behavior of the \(p\)-adic Potts-Bethe mapping. Discrt. Cont. Dyn. Sys. A 38(1), 231–245 (2018) Mukhamedov, F., Khakimov, O.: Phase transition and chaos: \(p\)-adic Potts model on a Cayley tree. Chaos Solitons Fract. 87, 190–196 (2016) Mukhamedov, F., Khakimov, O.: Chaos in \(p\)-adic Statistical lattice models: Potts model. In: Zuniniga-Galindo, W.A., Toni, B. (Eds.) Advances in Non-Archimedean Analysis and Applications—The \(p\)-adic Methodology in STEAM-H, pp. 113–164. Springer (2022) Mukhamedov, F., Saburov, M., Khakimov, O.: On \(p\)-adic Ising-Vannimenus model on an arbitrary order Cayley tree. J. Stat. Mech. P05032 (2015) Mukhamedov, F., Omirov, B., Saburov, M.: On cubic equations over \(p\)-adic fields. Int. J. Number Theory 10, 1171–1190 (2014) Rahmatullaev, M.M., Khakimov, O.N., Tukhtaboev, A.M.: A \(p\)-Adic generalized Gibbs measure for the Ising model on a Cayley tree. Theor. Math. Phys. 201(1), 1521–1530 (2019) Rahmatullaev, M.M., Tukhtabaev, A.M.: Non periodic \(p\)-adic generalized Gibbs measure for the Ising model. \(p\)-Adic Numbers Ultramet. Anal. Appl. 11, 319–327 (2019) Rosen, H.K.: Elementary Number Theory and Its Applications. Addison-Westley, Canada (1986) Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Sci. Publ, Singapore (2013) Schikhof, W.H.: Ultrametric Calculus. Cambridge Univ. Press, Cambridge (1984) Thiran, E., Verstegen, D., Weters, J.: \(p\)-adic dynamics. J. Stat. Phys. 54, 893–913 (1989) Tukhtabaev, A.: On \(G_2\)-periodic quasi Gibbs measures of \(p\)-adic Potts model on a Cayley tree. \(p\)-Adic Numbers Ultramet. Anal. Appl. 13, 291–307 (2021) Vladimirov, V.S., Volovich, I.V., Zelenov, E.V.: \(p\)-Adic Analysis and Mathematical Physics. World Sci. Publ, Singapore (1994) Woodcock, C.F., Smart, N.P.: \(p\)-adic chaos and random number generation. Exp. Math. 7, 333–342 (1998) Zuniga-Galindo, W.A., Torba, S.M.: Non-Archimedean Coulomb gases. J. Math. Phys. 61, 013504 (2020)