On paracomposition and change of variables in paradifferential operators

Ayman Rimah Said1
1Duke University, Durham, USA

Tóm tắt

In this paper we revisit the hypothesis needed to define the “paracomposition” operator, an analogue to the classic pull-back operation in the low regularity setting, first introduced by Alinhac (Commun Part Differ Equ 11(1):87–121, 1986). More precisely we do so in two directions. First we drop the diffeomorphism hypothesis. Secondly we give estimates in global Sobolev and Zygmund spaces. Thus we fully generalize Bony’s classic paralinearasition theorem giving sharp estimates for composition in Sobolev and Zygmund spaces. In order to prove that the new class of operations benefits of symbolic calculus properties when composed by a paradifferential operator, we discuss the pull-back of pseudodifferential and paradifferential operators which then become Fourier Integral Operators. In this discussion we show that those Fourier Integral Operators obtained by pull-back are pseudodifferential or paradifferential operators if and only if they are pulled-back by a diffeomorphism that is a change of variable. We give a proof of the change of variables in paradifferential operators. Finally we study the cutoff defining paradifferential operators and it’s stability by successive composition. It is known that the cutoff becomes worse after each composition, we give a slightly refined version of the cutoffs proposed by Hörmander (Lectures on nonlinear hyperbolic differential equations, Springer, Berlin, 1997) for which give an optimal estimate on the support of the cutoff after composition.

Tài liệu tham khảo

Alazard, T., Burq, N., Zuily, C.: On the water waves equations with surface tension. Duke Math. J. 158(3), 413–499 (2011) Alazard, T., Burq, N., Zuily, C.: On the Cauchy problem for gravity water waves. Invent. Math. 198, 71–163 (2014) Alinhac, S.: Paracomposition et operateurs paradifferentiels. Commun. Part. Differ. Equ. 11(1), 87–121 (1986) Alinhac, S., Gérard, P.: Pseudodifferential Operators and the Nash–Moser Theorem, Graduate Studies in Mathematics, vol. 82 (2007) Bauer, M., Bruveris, M., Cismas, E., Escher, J., Kolev, B.: Well-Posedness of the EPDiff Equation with a Pseudo-differential Inertia Operator (2019). hal-02352635 Bony, J.-M.: Calcule symbolique et propagation des singularités pour les équations aux dérivées partielles non-linéaires. Ann. Scient. de l’Ecole Norl. Sup. 14, 209–246 (1981) Bony, J.-M.: Propagation des singularités pour les équations aux dérivés partielles non-linéaires. Sem. Goulaouic–Meyer–Schwartz 1979–80, n\(^\circ \)22 Bony, J.-M.: Interaction des singularités pour les équations aux dérivées partielles non-linéaires. Sem. Goulaouic–Meyer–Schwartz, 1981–82, n\(^\circ \)2 Bony, J.-M.: Interaction des singularités pour les équations de Klein–Gordon non-linéaires. Sem. Goulaouic–Meyer–Schwartz, 1983–84, n\(^\circ \)10 Bourdaud, G.: Une algebre maximale d’operateurs pseudo-differentiels d’operateurs pseudo-differentiels. Commun. Part. Differ. Equ. 13(9), 1059–1083 (2022) Chandler-Wilde, S.N., Hewett, D.P., Moiola, A.: Sobolev spaces on non-Lipschitz subsets of \({{\mathbb{R}}^n}\) with application to boundary integral equations on fractal screens, arXiv:1607.01994 (2017) Hörmander, L.: Fourier integral operators. I. Acta Math. 127, 79–183 (1971) Hörmander, L.: Lectures on Nonlinear Hyperbolic Differential Equations. Springer, Berlin (1997) Inci, H., Kappeler, T., Topalov, P.: On the Regularity of the Composition of Diffeomorphisms, volume 226 of Memoirs of the American Mathematical Society Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Comm. Pure Appl. Math. 41, 891–907 (1988) Leichtnam, E.: Front d’onde d’une sous variété; propagation des singularités pour des équations aux dérivées partielles non linéaires, Thèse de 3éme cycle, Université Paris XI, Orsay Métivier, G.: Paradifferential Calculus and Applications to the Cauchy Problem for Non linear Systems. Ennio de Giorgi Math. res. Center Publ, Edizione della Normale (2008) Meyer, Y.: Remarques sur un théoème de J.M. Bony. Suppl. Rend. Circ. Mat. Palermo, \(n^\circ 1\), 1–20 (1981) Said, A.R.: A geometric proof to the quasi-linearity of the water-waves system and the incompressible Euler equations, arXiv preprint, arXiv:2002.02940 Shnirelman, A.: Microglobal analysis of the Euler equations. J. Math. Fluid Mech. 7(Suppl 3), S387 (2005). https://doi.org/10.1007/s00021-005-0167-5 Taylor, M.E.: Tools for PDE: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials. American Mathematical Society (2007)