On orientation-preserving automorphisms of Hamiltonian cycles in the N-dimensional Boolean cube

A. L. Perezhogin1
1Sobolev Institute of Mathematics, Novosibirsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. A. Evdokimov, “On Enumeration of Subsets of a Finite Set,” in: Methods of Discrete Analysis in Solving Combinatorial Problems, Vol. 34 (Inst. Mat., Novosibirsk, 1980), pp. 8–26.

A. L. Perezhogin, “On Automorphisms of Cycles in the n-Dimensional BooleanCube,” Diskret. Anal. Issled. Oper. Ser. 1, 14(3), 67–79 (2007).

M. Hall, Group Theory (Inostrannaya Literatura, Moscow, 1962) [in Russian].

I. J. Dejter and A. A. Delgado, “Classes of Hamilton Cycles in the 5-Cube,” J. Comb. Math. Comb. Comput. 61, 81–95 (2007).

E. N. Gilbert, “Gray Codes and Paths on the n-Cube,” Bell System Tech. J. 37(3), 815–826 (1958).

L. Goddyn and P. Gvozdjak, “Binary Gray Codes with Long Bit Runs,” Electron. J. Comb. 10, Research paper R27 (2003) [J. Comb. 10 (3), R27 (2003)].

G. Kreweras, “Some Remarks about Hamiltonian Circuits and Cycles on Hypercubes,” Bull. Inst. Comb. Appl. 12, 19–22 (1994).

M. Ramras, “A New Method of Generating Hamiltonian Cycles on the n-Cube,” Discrete Math. 85(3), 329–331 (1990).

C. D. Savage, “A Survey of Combinatorial Gray Codes,” SIAM Rev. 39(4), 605–629 (1997).

C. D. Savage and I. Shields, “A Hamilton Path Heuristic with Applications to the Middle Two Levels Problem,” Congr. Numerantium. 140,161–178 (1999).

I. Shields, B. J. Shields, and C. D. Savage, “An Update on the Middle Levels Problem,” Discrete Math. 309, 5271–5277 (2009).