On nonstrict semi-translation planes of Lenz-Barlotti class I-1

Springer Science and Business Media LLC - Tập 21 Số 1 - Trang 402-410 - 1970
Norman L. Johnson1
1Mathematics Department, University of Iowa, Iowa City, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

A. A. Albert, The finite planes of Ostrom. Bol. Soc. Mat. Mexicana1967, 1?13 (1967).

N. L.Johnson, Derivable chains of planes. Boll. Un. Mat. Ital. (to appear).

N. L.Johnson, Derivable semi-translation planes. Pacific J. Math. (to appear).

N. L. Johnson, A classification of semi-translation planes. Canad. J. Math.21, 1372?1387 (1969).

N. L. Johnson, Nonstrict semi-translation planes. Arch. Math.20, 301?310 (1969).

H. L�neburg, �ber projektive Ebenen, in denen jede Fahne von einer nichttrivialen Elation invariant gelassen wird. Abh. Math. Sem. Univ. Hamburg29, 27?76 (1965).

D. L. Morgan andT. G. Ostrom, Coordinate systems of some semi-translation planes. Trans. Amer. Math. Soc.111, 19?32 (1964).

T. G. Ostrom, Collineation groups of semi-translation planes. Pacific J. Math.15, 273?279 (1965).

T. G. Ostrom, Derivable nets. Canad. Math. Bull.8, 601?613 (1965).

T. G. Ostrom, The dual L�neburg planes. Math. Z.92, 201?209 (1966).

T. G. Ostrom, Semi-translation planes. Trans. Amer. Math. Soc.3, 1?18 (1964).

T. G. Ostrom, Vector spaces and construction of finite projective planes. Arch. Math.19, 1?25 (1968).