A. A. Albert, The finite planes of Ostrom. Bol. Soc. Mat. Mexicana1967, 1?13 (1967).
N. L.Johnson, Derivable chains of planes. Boll. Un. Mat. Ital. (to appear).
N. L.Johnson, Derivable semi-translation planes. Pacific J. Math. (to appear).
N. L. Johnson, A classification of semi-translation planes. Canad. J. Math.21, 1372?1387 (1969).
N. L. Johnson, Nonstrict semi-translation planes. Arch. Math.20, 301?310 (1969).
H. L�neburg, �ber projektive Ebenen, in denen jede Fahne von einer nichttrivialen Elation invariant gelassen wird. Abh. Math. Sem. Univ. Hamburg29, 27?76 (1965).
D. L. Morgan andT. G. Ostrom, Coordinate systems of some semi-translation planes. Trans. Amer. Math. Soc.111, 19?32 (1964).
T. G. Ostrom, Collineation groups of semi-translation planes. Pacific J. Math.15, 273?279 (1965).
T. G. Ostrom, Derivable nets. Canad. Math. Bull.8, 601?613 (1965).
T. G. Ostrom, The dual L�neburg planes. Math. Z.92, 201?209 (1966).
T. G. Ostrom, Semi-translation planes. Trans. Amer. Math. Soc.3, 1?18 (1964).
T. G. Ostrom, Vector spaces and construction of finite projective planes. Arch. Math.19, 1?25 (1968).