On modelling of bubble–particle attachment probability in flotation

International Journal of Mineral Processing - Tập 53 Số 4 - Trang 225-249 - 1998
Anh V. Nguyen1, John Ralston2, Hans Schulze1
1Max Planck Institute for Colloids and Interfaces, Research Group at the Freiberg University of Mining and Technology, Chemnitzer Str. 40, 09599 Freiberg, Germany
2Ian Wark Research Institute, University of South Australia, The Levels, Adelaide, S.A. 5095, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anfruns, J.P., Kitchener, J.A., 1976. The absolute rate of capture of single particles by single bubbles. In: Fuerstenau, M.C. (Ed.), Flotation – A.M. Gaudin Memorial Volume. Society Mineral Engineers (SME), Vol. 2, pp. 625–637.

Anfruns, 1977, Rate of capture of small particles in flotation, Trans. Inst. Min. Metall., Sect. C, 86, C9

Blake, 1985, Particle size, surface coverage and flotation response, Colloids Surf., 16, 41, 10.1016/0166-6622(85)80239-0

Blake, 1969, Kinetics of liquid/liquid displacement – note, J. Colloid Interface Sci., 30, 421, 10.1016/0021-9797(69)90411-1

Blake, 1972, Stability of aqueous films on hydrophobic methylated silica, J. Chem. Soc. Faraday Trans., 86, 1435, 10.1039/f19726801435

Blake, 1995, Models of wetting: immiscible lattice Boltzmann automata versus molecular kinetic theory, Langmuir, 11, 4588, 10.1021/la00011a065

Crawford, 1988, The influence of particle size and contact angle in mineral flotation, Int. J. Miner. Process., 23, 1, 10.1016/0301-7516(88)90002-6

Derjaguin, B.V., Dukhin, S.S., 1959. Theory of motion of mineral particles near a rising bubble in flotation (in Russian). Izv. Akad. Nauk SSSR, OTN: Metalurgiya i Toplivo 1, pp. 82–89 (Div. Tech. Sci.: Metall. and Fuel).

Dobby, 1986, A model of particle sliding time for flotation size bubbles, J. Colloid Interface Sci., 109, 493, 10.1016/0021-9797(86)90327-9

Dobby, 1987, Particle size dependence in flotation derived from a fundamental model of the capture process, Int. J. Miner. Process., 27, 241, 10.1016/0301-7516(87)90057-3

Drelich, 1992, The effect of surface heterogeneity on pseudo-line tension and the flotation limit of fine particle, Colloids Surf., 69, 35, 10.1016/0166-6622(92)80236-U

Eigeles, 1939, Kinetics of the attachment of mineral particle to air bubble (in Russian), Dokl. Akad. Nauk SSSR, 24, 342

Eigeles, M.A., 1964. The Basis of the Flotation of Non-sulphide Minerals (2nd ed., in Russian). Nedra, Moscow, 407 pp.

Eigeles, M.A., Volova, M.L., 1960. Kinetic investigation of effect of contact time, temperature and surface condition on the adhesion of bubble to mineral surfaces. In: Proc. 5th Int. Mineral Processing Congr. (London). Institution of Mining and Metallurgy, London, Pap. 14 (Group III), pp. 271–284.

Fielden, 1996, Surface and capillary forces affecting air bubble–particle interactions in aqueous electrolyte, Langmuir, 12, 3721, 10.1021/la960145c

Finch, J.A., Dobby, G.S., 1990. Column Flotation. Pergamon Press, Oxford, 180 pp.

Gaydos, 1994, The shape of liquid menisci near heterogeneous walls and the effect of line tension on contact angle hysteresis, Adv. Colloid Interface Sci., 49, 197, 10.1016/0001-8686(94)80016-2

Glembotsky, 1953, The time of attachment of air bubbles to mineral particles in flotation and its measurement (in Russian), Izv. Akad. Nauk SSSR (OTN), 11, 1524

Hewitt, 1993, Aqueous film drainage at the quartz/water/air interface, J. Chem. Soc. Faraday Trans., 89, 817, 10.1039/ft9938900817

Hewitt, 1994, Bubble–particle attachment efficiency, Miner. Eng., 7, 657, 10.1016/0892-6875(94)90097-3

Hewitt, 1995, Bubble–particle attachment, J. Chem. Soc. Faraday Trans., 91, 1997, 10.1039/FT9959101997

Jiang, 1986, Theoretical model of collision between particles and bubbles in flotation, Trans. Inst. Min. Metall. (London), 95, C187

Jowett, A., 1980. Formation and disruption of particle–bubble aggregates in flotation. In: Somasundaran, P. (Ed.), Proc. Int. Symp. Fine Particle Processing, Las Vegas. SME, New York, Vol. 1, Ch. 37, pp. 720–753.

Laskowski, 1970, Role of capillary effects in bubble–particle collision in flotation, Trans. Inst. Min. Metall., Sect. C, 79, C6

Li, 1990, Determination of line tension from drop size dependence of contact angles, Colloids Surf., 43, 195, 10.1016/0166-6622(90)80288-F

Li, 1990, Rate of collection of particles by flotation, Ind. Eng. Chem. Res., 29, 955, 10.1021/ie00102a004

Luttrell, G.H., 1986. Hydrodynamics and Mathematical Modelling of Fine Coal Flotation. Ph.D. thesis, Virginia Polytechnic Institute and State Univ.

Mileva, 1990, Solid particle in the boundary layer of a rising bubble, Colloid Polym. Sci., 268, 375, 10.1007/BF01411680

Mingins, 1979, Attachment of spherical particles to the surface of a pendant drop and the tension of the wetting perimeter, J. Chem. Soc. Faraday Trans. 2, 75, 1, 10.1039/f19797500001

Newcombe, 1994, Bubble spreading kinetics and mineral flotation, Miner. Eng., 7, 889, 10.1016/0892-6875(94)90131-7

Nguyen, 1993, On the sliding time flotation, Int. J. Miner. Process., 37, 1, 10.1016/0301-7516(93)90002-R

Nguyen, 1994, The collision between fine particle and single bubble in flotation, J. Colloid Interface Sci., 162, 123, 10.1006/jcis.1994.1016

Nguyen, 1994, Probability of collision between particles and bubbles in flotation: the theoretical inertialess model involving a swarm of bubbles in pulp phase, Int. J. Miner. Process., 40, 155, 10.1016/0301-7516(94)90041-8

Nguyen, 1994, A simple algorithm for the calculation of the terminal settling velocity of a single solid sphere in water, Int. J. Miner. Process., 41, 305, 10.1016/0301-7516(94)90036-1

Nguyen, V.A., Kmet, S., Schulze, H.J., 1995. On the collection events in flotation: the quantitative analysis of the particle–bubble collision and the attachment of particle onto bubble surface. In: Proc. 19th Int. Mineral Processing Congr., San Francisco, CA. SME, Littleton, CO.

Nguyen, 1997, An improved formula for terminal velocity of rigid spheres, Int. J. Miner. Process., 50, 53, 10.1016/S0301-7516(97)00007-0

Ralston, J., 1992. The influence of particle size and contact angle in flotation. In: Laskowski, J.S., Ralston, J. (Eds.), Colloid Chemistry in Mineral Processing. Elsevier, Amsterdam, Ch. 6, pp. 203–224.

Scheludko, 1963, On flotation theory (in German), Kolloid-Z. Z. Polym., 191, 52, 10.1007/BF01499363

Scheludko, 1976, Attachment of particles to a liquid surface (capillary theory of flotation), J. Chem. Soc. Faraday Trans. 1, 72, 2815, 10.1039/f19767202815

Schulze, H.J., 1984. Physico-Chemical Elementary Processes in Flotation – An Analysis from the Point of View of Colloid Science Including Processes Engineering Considerations. Dev. in Mineral Processing, Vol. 4 (Fuerstenau, D.W., Advisory Ed.), Elsevier, Amsterdam, 348 pp.

Schulze, H.J., 1989. Hydrodynamics of bubble–mineral particle collisions. In: Laskowski, J.S. (Ed.), Mineral Processing and Extraction Metallurgy Review, Vol. 5, Frothing in Flotation: The Jan Leja Volume. Gordon and Breach, New York, pp. 43–76.

Schulze, 1992, Probability of particle attachment on gas bubble by sliding, Adv. Colloid Interface Sci., 40, 283, 10.1016/0001-8686(92)80079-D

Schulze, H.J., 1993. Flotation as a heterocoagulation process: possibilities of calculating the probability of flotation. In: Dobias, B. (Ed.), Coagulation and Flocculation: Theory and Practice. Marcel Dekker, New York, Ch. 7, pp. 321–354.

Schulze, 1987, Stability of thin liquid film on Langmuir–Blodgett layers on silica surfaces, Colloids Surf., 24, 209, 10.1016/0166-6622(87)80351-7

Sutherland, 1948, Physical chemistry of flotation XI. Kinetics of the flotation process, J. Phys. Chem., 52, 394, 10.1021/j150458a013

Sven-Nilsson, 1934, Einfluß der Berühungszeit zwischen Mineral und Lustblase bei der Flotation, Kolloid-Z., 69, 230, 10.1007/BF01433238

Trahar, 1976, The selective flotation of galena from sphalerite and special reference to the effects of particle size, Int. J. Miner. Process., 3, 151, 10.1016/0301-7516(76)90031-4

Whelan, 1955, Particle and bubble attachment in froth flotation, Trans. Inst. Min. Metall. (London), 65, 181

Ye, 1989, Induction time measurements at a particle bed, Int. J. Miner. Process., 25, 221, 10.1016/0301-7516(89)90019-7

Yoon, R.-H., 1991. Hydrodynamic and surface forces in bubble–particle interactions. In: Proc. 17th Int. Mineral Processing Congr. (Dresden, Germany), Vol. II. Fine Particle Processing (Flotation), pp. 17–31.

Yoon, R.H., Luttrell, G.H., 1989. The effect of bubble size on fine particle flotation. In: Laskowski, J.S. (Ed.), Mineral Processing and Extraction Metallurgy Review, Vol. 5, Frothing in Flotation: The Jan Leja Volume. Gordon and Breach, New York, pp. 101–122.

Yoon, 1991, The critical rupture thickness of thin water films on hydrophobic surfaces, J. Colloid Interface Sci., 146, 565, 10.1016/0021-9797(91)90220-3

Yordan, J.L., Yoon, R.H., 1986. Induction time measurements for the quartz-amine flotation system. Presented at the 115th SME Annu. Mtg., New Orleans, LA. SME, Littleton, CO (Pre-print 86-105, 10 pp.).