On mammary stem cells
Tóm tắt
Từ khóa
Tài liệu tham khảo
Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. and Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA100, 3983-3988.
Allred, D. C., Brown, P. and Medina, D. (2004). The origins of estrogen receptor alpha-positive and estrogen receptor alpha-negative human breast cancer. Breast Cancer Res.6, 240-245.
Alvi, A. J., Clayton, H., Joshi, C., Enver, T., Ashworth, A., Vivanco, M. M., Dale, T. C. and Smalley, M. J. (2003). Functional and molecular characterisation of mammary side population cells. Breast Cancer Res.5, R1-R8.
Andl, T., Reddy, S. T., Gaddapara, T. and Millar, S. E. (2002). WNT signals are required for the initiation of hair follicle development. Dev. Cell2, 643-653.
Bafico, A., Liu, G., Goldin, L., Harris, V. and Aaronson, S. A. (2004). An autocrine mechanism for constitutive Wnt pathway activation in human cancer cells. Cancer Cells6, 497-506.
Bailey, E. C., Scott, M. P. and Johnson, R. L. (2000). Hedgehog signaling in animal development and human disease. Ernst Schering Res. Found. Workshop29, 211-235.
Beachy, P. A., Karhadkar, S. S. and Berman, D. M. (2004). Tissue repair and stem cell renewal in carcinogenesis. Nature432, 324-331.
Bonnet, D. and Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med.3, 730-737.
Boulanger, C. A., Wagner, K. U. and Smith, G. H. (2005). Parity-induced mouse mammary epithelial cells are pluripotent, self-renewing and sensitive to TGF-beta1 expression. Oncogene24, 552-560.
Brennan, K. R. and Brown, A. M. (2004). Wnt proteins in mammary development and cancer. J. Mammary Gland Biol. Neoplasia9, 119-131.
Callahan, R. and Egan, S. E. (2004). Notch signaling in mammary development and oncogenesis. J. Mammary Gland Biol. Neoplasia9, 145-163.
Clarke, R. B., Spence, K., Anderson, E., Howell, A., Okano, H. and Potten, C. S. (2005). A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev. Biol.277, 443-456.
Clayton, H., Titley, I. and Vivanco, M. (2004). Growth and differentiation of progenitor/stem cells derived from the human mammary gland. Exp. Cell Res.297, 444-460.
DeOme, K. B., Faulkin, L. J., Jr, Bern, H. A. and Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res.19, 515-520.
Deugnier, M. A., Faraldo, M. M., Janji, B., Rousselle, P., Thiery, J. P. and Glukhova, M. A. (2002). EGF controls the in vivo developmental potential of a mammary epithelial cell line possessing progenitor properties. J. Cell Biol.159, 453-463.
Dontu, G., Abdallah, W. M., Foley, J. M., Jackson, K. W., Clarke, M. F., Kawamura, M. J. and Wicha, M. S. (2003). In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev.17, 1253-1270.
Dontu, G., Jackson, K. W., McNicholas, E., Kawamura, M. J., Abdallah, W. M. and Wicha, M. S. (2004). Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res.6, R605-R615.
Fu, K. K., Pajak, T. F., Trotti, A., Jones, C. U., Spencer, S. A., Phillips, T. L., Garden, A. S., Ridge, J. A., Cooper, J. S. and Ang, K. K. (2000). A Radiation Therapy Oncology Group (RTOG) phase III randomized study to compare hyperfractionation and two variants of accelerated fractionation to standard fractionation radiotherapy for head and neck squamous cell carcinomas: first report of RTOG 9003. Int. J. Radiat. Oncol. Biol. Phys.48, 7-16.
Gallahan, D. and Callahan, R. (1997). The mouse mammary tumor associated gene INT3 is a unique member of the NOTCH gene family (NOTCH4). Oncogene14, 1883-1890.
Gallego, M. I., Beachy, P. A., Hennighausen, L. and Robinson, G. W. (2002). Differential requirements for shh in mammary tissue and hair follicle morphogenesis. Dev. Biol.249, 131-139.
Goodell, M. A. (2002). Multipotential stem cells and `side population' cells. Cytotherapy4, 507-508.
Goodell, M. A., Brose, K., Paradis, G., Conner, A. S. and Mulligan, R. C. (1996). Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J. Exp. Med.183, 1797-1806.
Goodell, M. A., Rosenzweig, M., Kim, H., Marks, D. F., DeMaria, M., Paradis, G., Grupp, S. A., Sieff, C. A., Mulligan, R. C. and Johnson, R. P. (1997). Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat. Med.3, 1337-1345.
Harari, P. M. (2004). Epidermal growth factor receptor inhibition strategies in oncology. Endocr. Relat. Cancer11, 689-708.
Hatsell, S., Rowlands, T., Hiremath, M. and Cowin, P. (2003). Beta-catenin and Tcfs in mammary development and cancer. J. Mammary Gland Biol. Neoplasia8, 145-158.
Ingham, P. W. and McMahon, A. P. (2001). Hedgehog signaling in animal development: paradigms and principles. Genes Dev.15, 3059-3087.
Jain, M., Arvanitis, C., Chu, K., Dewey, W., Leonhardt, E., Trinh, M., Sundberg, C. D., Bishop, J. M. and Felsher, D. W. (2002). Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science297, 102-104.
Jonker, J. W., Merino, G., Musters, S., van Herwaarden, A. E., Bolscher, E., Wagenaar, E., Mesman, E., Dale, T. C. and Schinkel, A. H. (2005). The breast cancer resistance protein BCRP (ABCG2) concentrates drugs and carcinogenic xenotoxins into milk. Nat. Med.11, 127-129.
Klopocki, E., Kristiansen, G., Wild, P. J., Klaman, I., Castanos-Velez, E., Singer, G., Stohr, R., Simon, R., Sauter, G., Leibiger, H. et al. (2004). Loss of SFRP1 is associated with breast cancer progression and poor prognosis in early stage tumors. Int. J. Oncol.25, 641-649.
Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J. and Clevers, H. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet.19, 379-383.
Kubo, M., Nakamura, M., Tasaki, A., Yamanaka, N., Nakashima, H., Nomura, M., Kuroki, S. and Katano, M. (2004). Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res.64, 6071-6074.
Leung, C., Lingbeek, M., Shakhova, O., Liu, J., Tanger, E., Saremaslani, P., Van Lohuizen, M. and Marino, S. (2004). Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature428, 337-341.
Lewis, M. T., Ross, S., Strickland, P. A., Sugnet, C. W., Jimenez, E., Scott, M. P. and Daniel, C. W. (1999). Defects in mouse mammary gland development caused by conditional haploinsufficiency of Patched-1. Development126, 5181-5193.
Lewis, M. T., Ross, S., Strickland, P. A., Sugnet, C. W., Jimenez, E., Hui, C. and Daniel, C. W. (2001). The Gli2 transcription factor is required for normal mouse mammary gland development. Dev. Biol.238, 133-144.
Li, Y., Welm, B., Podsypanina, K., Huang, S., Chamorro, M., Zhang, X., Rowlands, T., Egeblad, M., Cowin, P., Werb, Z. et al. (2003). Evidence that transgenes encoding components of the Wnt signaling pathway preferentially induce mammary cancers from progenitor cells. Proc. Natl. Acad. Sci. USA100, 15853-15858.
Liu, B. Y., McDermott, S. P., Khwaja, S. S. and Alexander, C. M. (2004). The transforming activity of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells. Proc. Natl. Acad. Sci. USA101, 4158-4163.
Machold, R., Hayashi, S., Rutlin, M., Muzumdar, M. D., Nery, S., Corbin, J. G., Gritli-Linde, A., Dellovade, T., Porter, J. A., Rubin, L. L. et al. (2003). Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron39, 937-950.
Molofsky, A. V., Pardal, R. and Morrison, S. J. (2004). Diverse mechanisms regulate stem cell self-renewal. Curr. Opin. Cell Biol.16, 700-707.
Moon, R. T., Bowerman, B., Boutros, M. and Perrimon, N. (2002). The promise and perils of Wnt signaling through beta-catenin. Science296, 1644-1646.
Ohlstein, B., Kai, T., Decotto, E. and Spradling, A. (2004). The stem cell niche: theme and variations. Curr. Opin. Cell Biol.16, 693-699.
Potten, C. S., Hume, W. J., Reid, P. and Cairns, J. (1978). The segregation of DNA in epithelial stem cells. Cell15, 899-906.
Potten, C. S., Owen, G. and Booth, D. (2002). Intestinal stem cells protect their genome by selective segregation of template DNA strands. J. Cell Sci.115, 2381-2388.
Radtke, F. and Clevers, H. (2005). Self-renewal and cancer of the gut: two sides of a coin. Science307, 1904-1909.
Reya, T., Morrison, S. J., Clarke, M. F. and Weissman, I. L. (2001). Stem cells, cancer, and cancer stem cells. Nature414, 105-111.
Reya, T., Duncan, A. W., Ailles, L., Domen, J., Scherer, D. C., Willert, K., Hintz, L., Nusse, R. and Weissman, I. L. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature423, 409-414.
Richert, M. M., Schwertfeger, K. L., Ryder, J. W. and Anderson, S. M. (2000). An atlas of mouse mammary gland development. J. Mammary Gland Biol. Neoplasia5, 227-241.
Rizvi, A. Z. and Wong, M. H. (2005). Epithelial stem cells and their niche: there's no place like home. Stem Cells23, 150-165.
Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Crit. Rev. Oncol. Hematol.51, 1-28.
Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J. and Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res.63, 5821-5828.
Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. and Dirks, P. B. (2004). Identification of human brain tumour initiating cells. Nature432, 396-401.
Smith, G. H. (2005). Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands. Development132, 681-687.
Smith, G. H. and Medina, D. (1988). A morphologically distinct candidate for an epithelial stem cell in mouse mammary gland. J. Cell Sci.90, 173-183.
Smith, G. H., Gallahan, D., Diella, F., Jhappan, C., Merlino, G. and Callahan, R. (1995). Constitutive expression of a truncated INT3 gene in mouse mammary epithelium impairs differentiation and functional development. Cell Growth Differ.6, 563-577.
Sorlie, T., Tibshirani, R., Parker, J., Hastie, T., Marron, J. S., Nobel, A., Deng, S., Johnsen, H., Pesich, R., Geisler, S. et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA100, 8418-8423.
Spangrude, G. J. and Johnson, G. R. (1990). Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc. Natl. Acad. Sci. USA87, 7433-7437.
Stiles, B., Groszer, M., Wang, S., Jiao, J. and Wu, H. (2004). PTENless means more. Dev. Biol.273, 175-184.
Stingl, J., Raouf, A., Emerman, J. T. and Eaves, C. J. (2005). Epithelial progenitors in the normal human mammary gland. J. Mammary Gland Biol. Neoplasia10, 49-59.
Tepera, S. B., McCrea, P. D. and Rosen, J. M. (2003). A beta-catenin survival signal is required for normal lobular development in the mammary gland. J. Cell Sci.116, 1137-1149.
Thames, H. D., Ruifrok, A. C., Milas, L., Hunter, N., Mason, K. A., Terry, N. H. and White, R. A. (1996). Accelerated repopulation during fractionated irradiation of a murine ovarian carcinoma: downregulation of apoptosis as a possible mechanism. Int. J. Radiat. Oncol. Biol. Phys.35, 951-962.
Treister, A., Sagi-Assif, O., Meer, M., Smorodinsky, N. I., Anavi, R., Golan, I., Meshel, T., Kahana, O., Eshel, R., Katz, B. Z. et al. (1998). Expression of Ly-6, a marker for highly malignant murine tumor cells, is regulated by growth conditions and stress. Int. J. Cancer77, 306-313.
Ugolini, F., Charafe-Jauffret, E., Bardou, V. J., Geneix, J., Adelaide, J., Labat-Moleur, F., Penault-Llorca, F., Longy, M., Jacquemier, J., Birnbaum, D. et al. (2001). WNT pathway and mammary carcinogenesis: loss of expression of candidate tumor suppressor gene SFRP1 in most invasive carcinomas except of the medullary type. Oncogene20, 5810-5817.
van Genderen, C., Okamura, R. M., Farinas, I., Quo, R. G., Parslow, T. G., Bruhn, L. and Grosschedl, R. (1994). Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev.8, 2691-2703.
Welm, B. E., Tepera, S. B., Venezia, T., Graubert, T. A., Rosen, J. M. and Goodell, M. A. (2002). Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev. Biol.245, 42-56.
Weng, A. and Aster, J. C. (2004). Multiple niches for Notch in cancer: context is everything. Curr. Opin. Genet. Dev.14, 48-54.
Williams, J. M. and Daniel, C. W. (1983). Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol.97, 274-290.
Wilson, A., Murphy, M. J., Oskarsson, T., Kaloulis, K., Bettess, M. D., Oser, G. M., Pasche, A. C., Knabenhans, C., Macdonald, H. R. and Trumpp, A. (2004). c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev.18, 2747-2763.
Yamashita, Y. M., Fuller, M. T. and Jones, D. L. (2005). Signaling in stem cell niches: lessons from the Drosophila germline. J. Cell Sci.118, 665-672.
Zeps, N., Bentel, J. M., Papadimitriou, J. M., D'Antuono, M. F. and Dawkins, H. J. (1998). Estrogen receptor-negative epithelial cells in mouse mammary gland development and growth. Differentiation62, 221-226.
Zhang, Y. and Kalderon, D. (2001). Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature410, 599-604.
Zhou, S., Morris, J. J., Barnes, Y., Lan, L., Schuetz, J. D. and Sorrentino, B. P. (2002). Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo. Proc. Natl. Acad. Sci. USA99, 12339-12344.