On inference for fractional differential equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
Baudoin F, Coutin L (2007) Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stoch Proc Appl 117(5):550–574
Baudoin F, Ouyang C (2012) Gradient bounds for solutions of stochastic differential equations driven by fractional Brownian motions. To appear Malliavin Calculas and Stochastic Analysis: A Festschrift in Honor of David Nualart, Springer Verlag
Baudoin F, Ouyang C, Tindel S (2012) Gaussian bounds for the density of solutions of stochastic differential equations driven by fractional Brownian motions. Ann Inst H Poincare (to appear)
Dasgupta A, Kallianpur G (2000) Arbitrage opportunities for a class of Gladyshev processes. Appl Math Optim 41(3):377–385
Deya A, Neuenkirch A, Tindel S (2012) A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann Inst Henri Poincaré Probab Stat 48(2):518–550
Duffie D, Glynn P (1995) Efficient Monte Carlo simulation of security prices. Ann Appl Probab 5(4):897–905
Durham G, Gallant A (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J Bus Econ Stat 20(3):297–338
Friz P, Victoir N (2010) Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge University Press, Cambridge
Gobet E (2001) Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. Bernoulli 7(6):899–912
Guasoni P (2006) No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math Finance 16(3):569–582
Hairer M (2005) Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann Probab 33(2):703–758
Hairer M, Majda A (2010) A simple framework to justify linear response theory. Nonlinearity 23(4):909–922
Hairer M, Ohashi A (2007) Ergodicity theory of SDEs with extrinsic memory. Ann Probab 35(5):1950–1977
Hairer M, Pillai S (2011) Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Ann Inst Henri Poincaré Probab Stat 47(2):601–628
Hu Y, Nualart D (2007) Differential equations driven by Hölder continuous functions of order greater than $$1/2$$ . Abel Symp 2:349–413
Hu Y, Oksendal B (2003) Fractional white noise calculus and applications to finance. Infin dimens anal quant probab relat top 6(1):1–32
Hu Y, Oksendal B, Sulem A (2003) Optimal sonsumption and portfolio in a Black-Scholes market driven by fractional Brownian motion. Infin dimens anal quant probab relat top 6(4):519–536
Kasonga R (1990) Maximum likelihood theory for large interacting systems. SIAM J Appl Math 50(3):865–875
Kleptsyna M, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process 5(3):229–248
Kou S, Sunney-Xie X (2004) Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys Rev Lett 93(18)
Kushner HJ, Yin GG (1997) Stochastic approximation algorithms and applications. Springer, Heidelberg
Lejay A (2003) An introduction to rough paths. Séminaire de probabilités 37. Lect Notes Math 1832: 1–59
León J, Tindel S (2012) Malliavin calculus for fractional delay equations. J Theor Probab 25(3):854–889
Mishura Y, Shevchenko G (2008) The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics 80(5):489–511
Neuenkirch A, Nourdin I, Rößler A, Tindel S (2009) Trees and asymptotic developments for fractional diffusion processes. Ann Inst Henri Poincar Probab Stat 45(1):157–174
Nualart D 2006 Malliavin Calculus and related topics. Springer, Heidelberg
Nualart D, Rǎşcanu A (2002) Differential equations driven by fractional Brownian motion. Collect Math 53(1):55–81
Nualart D, Saussereau B (2009) Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stoch Process Appl 119(2):391–409
Odde D, Tanaka E, Hawkins S, Buettner H (1996) Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnol Bioeng 50(4):452–461
Pedersen A (1995) Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1(3):257–279
Papavasiliou A, Ladroue C (2012) Parameter estimation for rough differential equations. Ann Stat 39(4): 2047–2073
Sorensen M (2009) Parametric inference for discretely sampled stochastic differential equations. In: Andersen TG, Davis RA, Kreiss J-P, and Mikosch T (eds) Handbook of financial time series, Springer, Heidelberg, p 531–553
Tudor C, Viens F (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183–1212
Willinger W, Taqqu MS, Teverovsky V (1999) Stock market prices and long-range dependence. Finance Stoch 3(1):1–13