On inference for fractional differential equations

Alexandra Chronopoulou1, Samy Tindel1
1Institut Élie Cartan Nancy, B.P. 239, 54506 Vandœuvre-lès-Nancy Cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Baudoin F, Coutin L (2007) Operators associated with a stochastic differential equation driven by fractional Brownian motions. Stoch Proc Appl 117(5):550–574

Baudoin F, Ouyang C (2012) Gradient bounds for solutions of stochastic differential equations driven by fractional Brownian motions. To appear Malliavin Calculas and Stochastic Analysis: A Festschrift in Honor of David Nualart, Springer Verlag

Baudoin F, Ouyang C, Tindel S (2012) Gaussian bounds for the density of solutions of stochastic differential equations driven by fractional Brownian motions. Ann Inst H Poincare (to appear)

Blum JR (1954) Multidimensional stochastic approximation methods. Ann Math Stat 25(4):737–744

Cheridito P (2003) Arbitrage in fractional Brownian motion models. Finance Stoch 7(4):533–553

Dalang R, Nualart E (2004) Potential theory for hyperbolic SPDEs. Ann Probab 32(3)A:2099–2148

Dasgupta A, Kallianpur G (2000) Arbitrage opportunities for a class of Gladyshev processes. Appl Math Optim 41(3):377–385

Deya A, Neuenkirch A, Tindel S (2012) A Milstein-type scheme without Lévy area terms for SDEs driven by fractional Brownian motion. Ann Inst Henri Poincaré Probab Stat 48(2):518–550

Duffie D, Glynn P (1995) Efficient Monte Carlo simulation of security prices. Ann Appl Probab 5(4):897–905

Durham G, Gallant A (2002) Numerical techniques for maximum likelihood estimation of continuous-time diffusion processes. J Bus Econ Stat 20(3):297–338

Friz P, Victoir N (2010) Multidimensional stochastic processes as rough paths. Theory and applications. Cambridge University Press, Cambridge

Gobet E (2001) Local asymptotic mixed normality property for elliptic diffusion: a Malliavin calculus approach. Bernoulli 7(6):899–912

Guasoni P (2006) No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math Finance 16(3):569–582

Gubinelli M (2004) Controlling rough paths. J Funct Anal 216:86–140

Hairer M (2005) Ergodicity of stochastic differential equations driven by fractional Brownian motion. Ann Probab 33(2):703–758

Hairer M, Majda A (2010) A simple framework to justify linear response theory. Nonlinearity 23(4):909–922

Hairer M, Ohashi A (2007) Ergodicity theory of SDEs with extrinsic memory. Ann Probab 35(5):1950–1977

Hairer M, Pillai S (2011) Ergodicity of hypoelliptic SDEs driven by fractional Brownian motion. Ann Inst Henri Poincaré Probab Stat 47(2):601–628

Hu Y, Nualart D (2007) Differential equations driven by Hölder continuous functions of order greater than $$1/2$$ . Abel Symp 2:349–413

Hu Y, Oksendal B (2003) Fractional white noise calculus and applications to finance. Infin dimens anal quant probab relat top 6(1):1–32

Hu Y, Oksendal B, Sulem A (2003) Optimal sonsumption and portfolio in a Black-Scholes market driven by fractional Brownian motion. Infin dimens anal quant probab relat top 6(4):519–536

Kasonga R (1990) Maximum likelihood theory for large interacting systems. SIAM J Appl Math 50(3):865–875

Kleptsyna M, Le Breton A (2002) Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Stat Inference Stoch Process 5(3):229–248

Kou S, Sunney-Xie X (2004) Generalized Langevin equation with fractional Gaussian noise: subdiffusion within a single protein molecule. Phys Rev Lett 93(18)

Kushner HJ, Yin GG (1997) Stochastic approximation algorithms and applications. Springer, Heidelberg

Lejay A (2003) An introduction to rough paths. Séminaire de probabilités 37. Lect Notes Math 1832: 1–59

León J, Tindel S (2012) Malliavin calculus for fractional delay equations. J Theor Probab 25(3):854–889

Lyons T, Qian Z (2002) System control and rough paths. Oxford University Press, London

Mishura Y, Shevchenko G (2008) The rate of convergence for Euler approximations of solutions of stochastic differential equations driven by fractional Brownian motion. Stochastics 80(5):489–511

Neuenkirch A, Nourdin I, Rößler A, Tindel S (2009) Trees and asymptotic developments for fractional diffusion processes. Ann Inst Henri Poincar Probab Stat 45(1):157–174

Nualart D 2006 Malliavin Calculus and related topics. Springer, Heidelberg

Nualart D, Rǎşcanu A (2002) Differential equations driven by fractional Brownian motion. Collect Math 53(1):55–81

Nualart D, Saussereau B (2009) Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion. Stoch Process Appl 119(2):391–409

Odde D, Tanaka E, Hawkins S, Buettner H (1996) Stochastic dynamics of the nerve growth cone and its microtubules during neurite outgrowth. Biotechnol Bioeng 50(4):452–461

Pedersen A (1995) Consistency and asymptotic normality of an approximate maximum likelihood estimator for discretely observed diffusion processes. Bernoulli 1(3):257–279

Papavasiliou A, Ladroue C (2012) Parameter estimation for rough differential equations. Ann Stat 39(4): 2047–2073

Robbins H, Monro S(1951) A Stochastic approximation method. Ann Math Stat 22(3):400–407

Rogers LCG (1997) Arbitrage with fractional Brownian motion. Math Finance 7(1):95–105

Sorensen M (2009) Parametric inference for discretely sampled stochastic differential equations. In: Andersen TG, Davis RA, Kreiss J-P, and Mikosch T (eds) Handbook of financial time series, Springer, Heidelberg, p 531–553

Tudor C, Viens F (2007) Statistical aspects of the fractional stochastic calculus. Ann Stat 35(3):1183–1212

Willinger W, Taqqu MS, Teverovsky V (1999) Stock market prices and long-range dependence. Finance Stoch 3(1):1–13

Zähle M (1998) Integration with respect to fractal functions and stochastic calculus I. Probab Theory Relat Fields 111:333–374