On ideal summability and a Korovkin type approximation theorem
Tóm tắt
Từ khóa
Tài liệu tham khảo
Altomare, F., and M. Campiti. 1994. Korovkin type approximation theory and its applications. Berlin: Walter de Gruyter Publ.
Caserta, A., G. Di Maio, and D.R.L. Koc̆inac. 2011. Statistical convergence in function spaces. Abstract and Applied Analysis 2011: Article ID 420419.
Cheng, L.X., G.C. Lin, Y.Y. Lan, and H. Liu. 2008. Measure theory of statistical convergence. Science in China Series A: Mathematics 51: 2285–2303.
Connor, J., and M.A. Swardson. 1993. Measures and ideals of $$C^{\ast }(X) $$ C * ( X ) . Annals of the New York Academy of Sciences 704: 80–91.
Duman, O. 2007. A Korovkin type approximation throrems via $$I$$ I -convergence. Czechoslovak Mathematical Journal 75 (132): 367–375.
Gadjiev, A.D. 1974. The convergence problem for a sequence of positive linear operators an unbounded sets, and theorems analogous to that of P.P. Korovkin. Soviet Mathematics Doklady 15: 1433–1436.
Gadjiev, A.D., and C. Orhan. 2002. Some approximation theorems via statistical convergence. Rocky Mountain Journal of Mathematics 32 (1): 129–138.
Korovkin, P.P. 1960. Linear operators and the theory of approximation, Delhi.
Kostyrko, P., T. S̆alát, and W. Wilczyński. 2000–2001. $$I$$ I -convergence. Real Analysis Exchange 26: 669–686.
Kostyrko, P., M. Macaj, T. S̆alat, and M. Sleziak. 2005. $$I$$ I -convergence and extremal $$I$$ I -limit points. Mathematica Slovaca 55: 443–64.
Leindler, L. 1965. Über die de la Vallée-Pousinsche Summierbarkeit allgenmeiner Othogonalreihen. Acta Mathematica Academiae Scientiarum Hungaricae 16: 375–387.
Maio, G.D., and L.D.R. Koc̆inac. 2008. Statistical convergence in topology. Topology and its Applications 156: 28–45.
Miller, H.I. 1995. A measure theoretical subsequence characterization of statistical convergence. Transactions of the American Mathematical Society 347 (5): 1811–1819.
S̆alát, T. 1980. On statistical convergence of real numbers. Mathematica Slovaca 30: 139–150.