On hyperbolic systems with time-dependent Hölder characteristics
Tóm tắt
In this paper, we study the well-posedness of weakly hyperbolic systems with time-dependent coefficients. We assume that the eigenvalues are low regular, in the sense that they are Hölder with respect to t. In the past, these kinds of systems have been investigated by Yuzawa (J Differ Equ 219(2):363–374, 2005) and Kajitani and Yuzawa (Ann Sc Norm Super Pisa Cl Sci (5) 5(4):465–482, 2006) by employing semigroup techniques (Tanabe–Sobolevski method). Here, under a certain uniform property of the eigenvalues, we improve the Gevrey well-posedness result of Yuzawa (2005) and we obtain well-posedness in spaces of ultradistributions as well. Our main idea is a reduction of the system to block Sylvester form and then the formulation of suitable energy estimates inspired by the treatment of scalar equations in Garetto and Ruzhansky (J Differ Equ 253(5):1317–1340, 2012).
Tài liệu tham khảo
Colombini, F., De Giorgi, E., Spagnolo, S.: Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temps. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 6(3), 511–559 (1979)
Colombini, F., Jannelli, E., Spagnolo, S.: Nonuniqueness in hyperbolic Cauchy problems. Ann. Math. (2) 126(3), 495–524 (1987)
Colombini, F., Kinoshita, T.: On the Gevrey well posedness of the Cauchy problem for weakly hyperbolic equations of higher order. J. Differ. Equ. 186(2), 394–419 (2002)
Colombini, F., Spagnolo, S.: An example of a weakly hyperbolic Cauchy problem not well posed in \(C^{\infty }\). Acta Math. 148, 243–253 (1982)
D’Ancona, P., Spagnolo, S.: Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 1(1), 169–185 (1998)
Garetto, C.: On hyperbolic equations and systems with non-regular time dependent coefficients. J. Differ. Equ. 259(11), 5846–5874 (2015)
Garetto, C., Ruzhansky, M.: On the well-posedness of weakly hyperbolic equations with time-dependent coefficients. J. Differ. Equ. 253(5), 1317–1340 (2012)
Garetto, C., Ruzhansky, M.: Weakly hyperbolic equations with non-analytic coefficients and lower order terms. Math. Ann. 357(2), 401–440 (2013)
Garetto, C., Ruzhansky, M.: A note on weakly hyperbolic equations with analytic principal part. J. Math. Anal. Appl. 412(1), 1–14 (2014)
Garetto, C., Ruzhansky, M.: Hyperbolic second order equations with non-regular time dependent coefficients. Arch. Ration. Mech. Anal. 217(1), 113–154 (2015)
Jannelli, E.: Linear Kovalevskian systems with time-dependent coefficients. Commun. Partial Differ. Equ. 9(14), 1373–1406 (1984)
Kajitani, K.: Global real analytic solutions of the Cauchy problem for linear partial differential equations. Commun. Partial Differ. Equ. 11(13), 1489–1513 (1986)
Kinoshita, T., Spagnolo, S.: Hyperbolic equations with non-analytic coefficients. Math. Ann. 336(3), 551–569 (2006)
Kajitani, K., Yuzawa, Y.: The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to the time variable. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 5(4), 465–482 (2006)
Yuzawa, Y.: The Cauchy problem for hyperbolic systems with Hölder continuous coefficients with respect to time. J. Differ. Equ. 219(2), 363–374 (2005)