On-grid batteries for large-scale energy storage: Challenges and opportunities for policy and technology
Tóm tắt
Từ khóa
Tài liệu tham khảo
REN 21 GSR global status report: Available at: http://www.ren21.net/wp-content/uploads/2017/06/17-8399_GSR_2017_Full_Report_0621_Opt.pdf. pp137 et seqq (accessed July 26, 2018).
Faunce T.A. and Charles C.: Nanotechnology, plasma, hydrogen from artificial photosynthesis and fuel cells: Powering the developing world to the sustainocene. In Nanotechnology Toward the Sustainocene, Faunce T.A., ed. (Pan Stanford, Singapore, 2015); pp. 241–253.
UN Paris Agreement, status of ratification update: Availabe at: http://unfccc.int/paris_agreement/items/9444.php (accessed November 6, 2017).
International Energy Agency: Tracking clean energy report, 2017.
REN 21 global renewables report: Available at: http://www.ren21.net/future-of-renewables/global-futures-report/ (accessed July 26, 2018).
Ferrey S.: Efficiency in the regulatory crucible: Navigating 21st century smart technology and power. Geo. Wash. J. Energy Environ. Law 1, 32 (2012).
International Energy Agency IEA: Tracking progress: Energy storage (2017). Available at: http://www.iea.org/etp/tracking2017/energystorage/ (accessed July 26, 2018).
IEA: Tracking clean energy progress 2017: Energy technology perspectives 2017 (2017). Available at: http://www.iea.org/etp/tracking2017/energystorage/ (accessed July 26, 2018).
IEA 2017 at 62: Aavailable at: http://www.iea.org/publications/freepublications/publication/TrackingCleanEnergyProgress2017.pdf (accessed July 26, 2018).
Edenhofer O., Pichs-Madruga R., Sokona Y., et. al., eds.: Renewable Energy Sources and Climate Change Mitigation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2011).
Australian Energy Regulator: State of the Energy Market: May 2017 (2017); p. 158. Available at: https://www.aer.gov.au/publications/state-of-the-energy-market-reports/state-of-the-energy-market-may-2017 (accessed July 26, 2018).
Clean Energy Council: Clean Energy Report Australia, 2016. Available at: https://www.cleanenergycouncil.org.au/policy-advocacy/reports/clean-energy-australia-report.html (accessed July 26, 2018).
Australian Energy Market Operator (2017) South Australia: System Black Report (4th and Final), March 2017, 271pp. Available at: https://www.aemo.com.au/-/media/Files/Electricity/NEM/Market_Notices_and_Events/Power_System_Incident_Reports/2017/Integrated-Final-Report-SA-Black-System-28-September-2016.pdf (accessed July 26, 2018).
Turnbull ignored advice that renewable energy not to blame for SA blackouts. Available at: https://www.theguardian.com/australia-news/2017/feb/13/turnbull-ignored-advice-that-renewable-energy-not-to-blame-for-sa-blackouts (accessed July 26, 2018).
Lloyd G.: ‘Can South Australia battery power Elon musks’ Tesla dreams? Weekend Australia July 15, 2017.
Elon Musk’s giant lithium ion battery completed by Tesla in SA’s Mid North. Available at: http://www.abc.net.au/news/2017-11-23/worlds-most-powerful-lithium-ion-battery-finished-in-sa/9183868 (accessed July 26, 2018).
Elon Musk Tesla to give solar panel batteries to SA homes. ABC news. Available at: http://www.abc.net.au/news/2018-02-04/elon-musk-tesla-to-give-solar-panels-batteries-to-sa-homes/9394352 (accessed July 26, 2018).
Blood D.: Battery-based energy storage: The renewable power proliferation enabler. Renewable Energy Focus 17(6), 237–310 (2016).
DOE global energy storage database. Available at: http://energystorageexchange.org/projects/2217 (accessed July 26, 2018).
Haegel N.M., Margolis R., Buonassisi T., Feldman D., Froitzheim A., Garabedian R., Green M., Glunz S., Henning H., Holder B., Kaizuka I., Kroposki B., Matsubara K., Niki S., Sakurai K., Schindler R.A., Tumas W., Weber E.R., Wilson G., Woodhouse M., and Kurtz S.: Terawatt-scale photovoltaics: Trajectories and challenges. Science 356(6334), 141–143 (April 14, 2017). Available at: https://doi.org/10.1126/science.aal1288.
Denholm P., O’Connell M., Brinkman G., and Jorgenson J.: Overgeneration from solar energy in California: A field guide to the duck chart” national renewable energy laboratory. Prepared under Task No. TM13 5020. Available at: https://www.nrel.gov/docs/fy16osti/65023.pdf (accessed July 26, 2018).
Hongwei Y., Duan J., Du W., Xue S., and Sun J.: China’s energy storage industry: Develop status, existing problems and countermeasures. Renewable Sustainable Energy Rev. 71, 767–784 (2017).
Ning Z., Lu X., McElroy M.B., Nielsen C.P., Chen X., Deng Y., and Kang C.: Reducing curtailment of wind electricity in China by employing electric boilers for heat and pumped hydro for energy storage. Appl. Energy 184, 987–994 (2016).
Kunisch H.J., Kramer K.G., and Dominik H.: Battery energy storage-another option for load-frequency-control and instantaneous reserve. IEEE Trans. Energy Convers. 1, 41–46 (1986).
Naser W.: New frequency regulation in Berlin. Elektrizitatswirtschaft 86, 532–535 (1987).
Sossan F. and Paolone M.: Integration and operation of utility-scale battery energy storage systems: The EPFL’s experience. IFAC-Papers on Line 49–27, 433–438 (2016).
Change B., Kim C., Kim T., Jeon W., Shin S., and Han H.: Demonstration study on the large-scale battery energy storage for renewables integration. Energy Environ. 26(1), 183–194 (2015).
Khald M. and Savkin A.: Model predictive control based efficient operation of battery energy storage system for primary frequency control. In 11th International Conference on Control Automation Robotics and Vision (2010); pp. 2248–2252.
Sigrist L., Lobato E., and Rouco L.: Energy storage systems providing primary reserve and peak shaving in small isolated power systems: An economic assessment. Int. J. Electr. Power Energy Syst. 53, 675–683 (2013).
Reihani E., Sepasi S., Roose L.R., and Matsura M.: Energy management at the distribution grid using a battery energy storage system (BESS). Electr. Power Energy Syst. 77, 337–344 (2016).
Stenzel P., Koj J.C., Schreiber A., Hennings W., and Zapp P.: Primary control provided by large-scale battery energy storage systems or fossil power plants in Germany and related environmental impacts. J. Energy Storage 8, 300–310 (2016).
Koj J.C., Stenzel P., Schreiber A., Hennings W., Zapp P., Wrede G., and Hahndorf I.: Life cycle assessment of primary control provision by battery storage systems and fossil power plants. Energy Procedia 73, 69–78 (2015).
Blomgren G.E.: The development and future of lithium ion batteries. J. Electrochem. Soc. 164(1), A5019–A5025 (2017).
Choi J.W. and Aurbach D.: Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. 1(1), 1–16 (2016).
Whittingham M.S.: Electrical energy storage and intercalation chemistry. Science 192(4244), 1126–1127 (1976).
Roth E.P. and Orendorff C.J.: How electrolytes influence battery safety. Electrochem. Soc. Interface 21(2), 45–49 (2012).
McCloskey B.D.: Expanding the Ragone plot: Pushing the limits of energy storage. J. Phys. Chem. Lett. 6, 3592–3593 (2015).
Iacopi F., Van Hove M., Charles M., and Endo K.: Electronics with wide bandgap materials: Towards greener, more efficient technologies. Mater. Res. Bull. 40(5), 390–395 (2015).
Kucinskis G., Bajars G., and Kleperis J.: Graphene in lithium ion battery cathode materials: A review. J. Power Sources 240, 66–79 (2013).
Yang T.C-J., Fiala P., Jeangros Q., and Ballif C.: High-bandgap Perovskite materials for multijunction solar cells. Nat. Energy 2, 861–868 (2017).
Bucur C.B., Gregory T., Oliver A.G., and Muldoon J.: Confession of a magnesium battery. J. Phys. Chem. Lett. 6, 3578–3591 (2015).
Jayaprakash N., Das S.K., and Archer L.A.: The rechargeable aluminum-ion battery. Chem. Commun. 47, 12610–12612 (2011).
Ji X., Lee K.T., and Nazar L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500–506 (2009); J. Zheng et al:. ACS Energy Lett. 2(5), 1105–1114 (2017).
Tulodziecki M., Leverick G.M., Amanchukwu C.V., Katayama Y., Kwabi D.G., Bardé F., Hammond P.T., and Shao-Horn Y.: The role of iodide in the formation of lithium hydroxide in lithium–oxygen batteries. Energy Environ. Sci. 8, 10 (2017).
Wang W., Luo Q., Li B., Wei X., Li L., and Yang Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23(8), 970–986 (2013).
Vetter J., Novak P., Wagner M.R., Veit C., Möller K-C., Besenhard J., Winter M., Wohlfahrt-Mehrens M., Vogler C., and Hammouce A.: Ageing mechanisms in lithium-ion batteries. J. Power Sources 147, 269–281 (2005).
Li L., Wang P., Chao K-H., Zhou Y., and Xie Y.: Remaining useful life prediction for lithium ion batteries Based on Gaussian processes mixture. PLoS One 11(9), e0163004 (2016).
AS/NZS 5139 electrical installations: Safety of battery systems for use with power conversion equipment, 2017. Available at: https://sapc.standards.org.au.
Zakeri B. and Syri S.: Electrical energy storage systems: A comparative life cycle cost analysis. Renewable Sustainable Energy Rev. 42, 569–596 (2015).
Wired: Can This Tesla Alum Build the World’s Greenest Battery? Available at: https://www.wired.com/story/ev-green-battery-factory-in-the-netherlands-competes-with-the-gigafactory/ (accessed July 26, 2018).
Goldman Sachs: Low Carbon Economy Report (Goldman Sachs, New York, 2016).
US Geological Survey: World cobalt reserves as of 2017, by country (in metric tons) (n.d.). Available at: https://www.statista.com/statistics/264930/global-cobalt-reserves/ (accessed July 26, 2018).
Yanga Q., Geng Y., Dong H., Zhang J., Yue X., Sunf L., Lug X., and Chen Y.: Effect of environmental regulations on China’s graphite export. J. Clean. Prod. 161, 327–334 (2017).
US department of interior, US geological survey, mineral commodities, 2018, Available at: https://minerals.usgs.gov/minerals/pubs/mcs/2018/mcs2018.pdf (accessed July 26, 2018).
China’s Great Wall Secures Lithium Supply Reuters, 2017. Available at: https://www.reuters.com/article/us-great-wall-motor-pilbara/chinas-great-wall-secures-lithium-supply-with-pilbara-deal-idUSKCN1C40JY (accessed July 26, 2018).
Gaines L.: The future of automotive lithium-ion battery recycling: Charting a sustainable course. Sustainable Mater. Technol. 1–2, 2–7 (2014).
Rose D.M., Schenkman B., and Borneo D.: SANDIA REPORT SAND2013-8849 (US Department of Energy Sandia Laboratories, Albuquerque, New Mexico, 2013).
Fernão Pires V., Romero-Cadaval E., Vinnikov D., Roasto I., and Martins J.F.: Power converter interfaces for electrochemical energy storage systems—A review. Energy Convers. Manage. 86, 453–475 (2014).
Roberson D., Ellison J.F., Bhatnagar D., and Schoewald D.A.: SANDIA REPORT SAND2014-2883 (US Department of Energy Sandia Laboratories, Albuquerque, New Mexico, 2014).
Bodansky D., Brunnée J., and Rajamani L.: International Climate Change Law, 1st ed. (Oxford University Press, Oxford, U.K., 2017); p. 209. Made at the 21st Conference of the Parties to the UNFCCC meeting in Paris, 12 December 2015, the Paris Agreement entered into force on 4 November 2016, and has 195 Signatories: 195. A large proportion of this, 86.1%, i.e., 168 nations have now officially become Parties to the Paris Agreement.
The World Bank has compiled a freely accessible database of NDCs. Available at: http://spappssecext.worldbank.org/sites/indc/Pages/INDCHome.aspx (accessed July 26, 2018).
Jacobson M.Z., Delucchi M.A., Bauer Z.A.F., Goodman S.C., Chapman W.E., Cameron M.A., Bozonnat C., Chobadi L., Clonts H.A., Enevoldsen P., Erwin J.R., Fobi S.N., Goldstrom O.K., Hennessy E.M., Liu J., Lo J., Meyer C.B., Morris S.B., Moy K.R., O’ Neill P.L., Petkov I., Redfern S., Schucker R., Sontag M.A., Wang J., Weiner E., and Yachanin A.S.: 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for 139 countries of the world. Joule 1, 108–121 (2017). Available at: http://www.cell.com/joule/pdf/S2542-4351(17)30012-0.pdf (accessed July 26, 2018).
Jacobson M.Z., Delucchi M.A., Bazouin G., Bauer Z.A.F., Heavey C.C., Fisher E., Morris S.B., Piekutowski D.J.Y., Vencill T.A., and Yeskoo T.W.: 100% clean and renewable wind, water, and sunlight (WWS) all-sector energy roadmaps for the 50 United States. Energy Environ. Sci. 8(7), 2093 (2015).
Energy Independence and Security Act (EISA) of 200’ § 1301, 42 U.S.C. § 17,381 (Supp. I 2007)
Unruh G.: Understanding carbon Lock-in. Energy Policy 28, 817–830 (2000). Unruh G.: Escaping carbon lock-in. Energy Policy 30, 317–325 (2002).
CAISO: Advancing and Maximizing the Value of Energy Storage Technology: A California Roadmap (2014). Available at: https://www.caiso.com/informed/Pages/CleanGrid/EnergyStorageRoadmap.aspx (accessed July 26, 2018).
Storage 2011 Act: Available at: https://www.congress.gov/bill/112th-congress/senate-bill/1845 (accessed July 26, 2018).
Storage 2011 Act: https://www.congress.gov/bill/112th-congress/senate-bill/1845/text (accessed July 26, 2018).
NREL: Federal Tax Incentives for Battery Storage Systems (2018). Available at: https://www.nrel.gov/docs/fy18osti/70384.pdf (accessed July 26, 2018).
Energy Storage Tax Incentive and Deployment Act. Available at: https://www.congress.gov/bill/115th-congress/senate-bill/1868?r=1 (accessed July 26, 2018).
Feed In Tariff: Legal Sources on Renewable Energy. Available at: http://www.res-legal.eu/search-by-country/germany/single/s/res-e/t/promotion/aid/feed-in-tariff-eeg-feed-in-tariff/lastp/135/ (accessed July 26, 2018).
Gesetz für den Ausbau erneuerbarer Energien (Erneuerbare-Energien-Gesetz - EEG, 2017). Available at: https://www.gesetze-im-internet.de/eeg_2014/BJNR106610014.html (accessed July 26, 2018). Renewable Energy Sources Act (EEG 2017). Available at: https://www.clearingstelle-eeg-kwkg.de/files/node/8/EEG_2017_Englische_Version.pdf (accessed July 26, 2018).
Next generation renewables ACT government: Available at: https://www.environment.act.gov.au/energy/cleaner-energy/next-generation-renewables (accessed July 26, 2018).
AB2514 was approved on september 29, 2010 and was entered into California public utilities code, chapter 7.7, sections 2835-2839
Elkind E.N., Weissman S., and Hecht S.: The Power of Energy Storage: How to Increase Deployment in California to Reduce Greenhouse Gas Emissions (Policy Paper, Center for Law, Energy & the Environment, UC Berkeley School of Law and Environmental Law Center & Emmett Center on Climate Change and the Environment, UCLA School of Law, July 2010); p. 3.
Parkinson G.: Why Generators Are Terrified of Solar, 26 March 2012. Available at: http://reneweconomy.com.au/2012/why-generators-are-terrified-of-solar-44279 (accessed July 26, 2018).
Rocky Mountain Institute, Homer Energy, and Cohnreznick Think Energy: The Economics of Grid Defection: When and where Distributed Solar Generation Plus Storage Competes with Traditional Utility Service.
Meyer A.H.: Federal regulatory barriers to grid-deployed energy storage, 39 colum. J. Envtl. L. 479, 557 (2014); at 539.
Bender D., Byrne R., and Borneo D.: ARRA Energy Storage Demonstration Projects: Lessons Learned and Recommendation, Sandia National Laboratories, SAND2015-5242, 2015.
Energy Storage in Germany. Norton, Rose Fulbright: Available at: http://www.nortonrosefulbright.com/knowledge/publications/147129/energy-storage-in-germany-what-you-should-know (accessed July 26, 2018).
Title XIII of the Energy Independence and Security Act of 2007 (EISA) which gave legislative support for DOE’s smart grid activities.
Senjyu T., Takara H., Uezato K., and Funabashi T.: One-hour-ahead load forecasting using neural network. IEEE Trans. Power Syst. 17(1), 113–118 (2002).
Brophy H.A., Jamasb T., Platchkov L.M., and Pollitt M.G.: Demand-side management strategies and the residential sector: Lessons from the international experience. In The Future of Electricity Demand, Jamasb T. and Pollitt M., eds. (Cambridge University Press, Cambridge, 2011); pp. 337–378.
Sarvapali R.D., Vytelingum P., Rogers A., and Jennings N.R.: Putting the ‘smarts’ into the smart grid: A grand challenge for artificial intelligence. Commun. ACM 55(4), 86 (2012).
Valentin Robu why artificial intelligence could be key to future-proofing the grid. The Conversation, January 28, 2017.
Liu D., Pang J., Zhou J., Peng Y., and Pecht M.: Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 53(6), 832–839 (2013).
Gary Yang Z.: It’s Big and Long-Lived, and it Won’t Catch Fire: The Vanadium Redox-flow Battery (IEEE Spectrum Magazine, New York, 2017).
Ahmed M., Wang B., Gupta B., Boeckl J.L., Motta N., and Iacopi F.: On-silicon supercapacitors with enhanced storage performance. J. Electrochem. Soc. 164(4), A638–A644 (2017).
Zuo W.H., Li R.Z., Zhou C., Li Y.Y., Xia J.L., and Liu J.P.: Battery-supercapacitor hybrid devices: Recent progress and future prospects. Adv. Sci. 4, 1600539 (2017).
Faunce TA Global Artificial Photosynthesis: Transition from corporatocene to sustainocene. Photochemistry 44, 261–284 (2017).
Faunce T.A., Styring S., Wasielewski M.R., Brudvig G.W., Rutherford A.W., Messinger J., Lee A.F., Hill C.L., deGroot H., Fontecave M., MacFarlane D.R., Hankamer B., Nocera D.G., Tiede D.M., Dau H., Hillier W., and Wang A.R.: Artificial photosynthesis as a Frontier technology for energy sustainability. Energy Environ. Sci. 6, 1074-1076} (2013).
Liu C., Colon B.C., Ziesack M., Silver P.A., and Nocera D.G.: Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352(6290), 1210–1213 (2016).
Moliner R., Lazaro M.J., and Suelves I.: Analysis of the strategies for bridging the gap towards the hydrogen economy. Int. J. Hydrogen Energy 44, 19500–19508 (2016).
Prest J.: The future of feed-in tariffs: Capacity caps, scheme closures and looming grid parity. Renew. Energy Law Policy Rev. 3(1), 25–41 (2012).