On graph thickness, geometric thickness, and separator theorems

Computational Geometry - Tập 44 - Trang 95-99 - 2011
Christian A. Duncan1
1Department of Computer Science, Louisiana Tech University, Ruston, LA 71270, USA

Tài liệu tham khảo

Kainen, 1973, Thickness and coarseness of graphs, Abh. Math. Sem. Univ. Hamburg, 39, 88, 10.1007/BF02992822 Halton, 1991, On the thickness of graphs of given degree, Inform. Sci., 54, 219, 10.1016/0020-0255(91)90052-V Pach, 2001, Embedding planar graphs at fixed vertex locations, Graphs Combin., 17, 717, 10.1007/PL00007258 Harary, 1961, Research problem, Bull. Amer. Math. Soc., 67, 542, 10.1090/S0002-9904-1961-10677-0 Battle, 1962, Every planar graph with nine points has a nonplanar complement, Bull. Amer. Math. Soc., 68, 569, 10.1090/S0002-9904-1962-10850-7 Tutte, 1963, The non-biplanar character of the complete 9-graph, Canad. Math. Bull., 6, 319, 10.4153/CMB-1963-026-x Tutte, 1963, The thickness of a graph, Indag. Math., 25, 567, 10.1016/S1385-7258(63)50055-9 Mutzel, 1998, The thickness of graphs: A survey, Graphs Combin., 14, 59, 10.1007/PL00007219 Dillencourt, 2000, Geometric thickness of complete graphs, J. Graph Algorithms Appl., 4, 5, 10.7155/jgaa.00023 Bernhart, 1979, The book thickness of a graph, J. Combin. Theory Ser. B, 27, 320, 10.1016/0095-8956(79)90021-2 Eppstein Eppstein, 2004, Separating thickness from geometric thickness, vol. 342, 75 Nash-Williams, 1961, Edge-disjoint spanning trees of finite graphs, J. Lond. Math. Soc., 36, 445, 10.1112/jlms/s1-36.1.445 Nash-Williams, 1964, Decomposition of finite graphs into forests, J. Lond. Math. Soc., 39, 12, 10.1112/jlms/s1-39.1.12 Tutte, 1961, On the problem of decomposing a graph into n connected factors, J. Lond. Math. Soc., 36, 221, 10.1112/jlms/s1-36.1.221 Akiyama, 1981, Covering and packing in graphs. IV. Linear arboricity, Networks, 11, 69, 10.1002/net.3230110108 Alon, 1988, The linear arboricity of graphs, Israel J. Math., 62, 311, 10.1007/BF02783300 Guy, 1990, The outerthickness & outercoarseness of graphs. I. The complete graph & the n-cube, 297 Guy, 1990, The outerthickness & outercoarseness of graphs. II. The complete bipartite graph, 313 Aggarwal, 1991, Multilayer grid embeddings for VLSI, Algorithmica, 6, 129, 10.1007/BF01759038 Brass, 2007, On simultaneous planar graph embeddings, Comput. Geom.: Theory Appl., 36, 117, 10.1016/j.comgeo.2006.05.006 Duncan, 2004, The geometric thickness of low degree graphs, 340, 10.1145/997817.997868 Geyer, 2009, Two trees which are self-intersecting when drawn simultaneously, Discrete Math., 309, 1909, 10.1016/j.disc.2008.01.033 Malitz, 1994, Graphs with E edges have pagenumber O(E), J. Algorithms, 17, 71, 10.1006/jagm.1994.1027 Barát, 2006, Bounded-degree graphs have arbitrarily large geometric thickness, Electron. J. Combin., 13, R3, 10.37236/1029 Dujmović, 2007, Graph treewidth and geometric thickness parameters, Discrete Comput. Geom., 37, 641, 10.1007/s00454-007-1318-7 R. Blankenship, Book embeddings of graphs, Ph.D. thesis, Department of Mathematics, Louisiana State University, Baton Rouge, LA, USA, 2003. Blankenship, 2001, Book embeddings of graphs and minor-closed classes Chandran, 2007, On the Hadwiger's conjecture for graph products, Discrete Math., 307, 266, 10.1016/j.disc.2006.06.019 Lipton, 1979, A separator theorem for planar graphs, SIAM J. Appl. Math., 36, 177, 10.1137/0136016 Alon, 1994, Planar separators, SIAM J. Discrete Math., 7, 184, 10.1137/S0895480191198768 Bodlaender, 1998, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209, 1, 10.1016/S0304-3975(97)00228-4 DeVos, 2004, Excluding any graph as a minor allows a low tree-width 2-coloring, J. Combin. Theory Ser. B, 91, 25, 10.1016/j.jctb.2003.09.001 Alon, 1990, A separator theorem for nonplanar graphs, J. Amer. Math. Soc., 3, 801, 10.1090/S0894-0347-1990-1065053-0 Hassin, 1986, Efficient algorithms for optimization and selection on series-parallel graphs, SIAM J. Algebraic Discrete Meth., 7, 379, 10.1137/0607043