On generalized Mersenne Primes and class-numbers of equivalent quadratic fields and cyclotomic fields

Springer Science and Business Media LLC - Tập 67 Số 1 - Trang 71-75 - 2015
Azizul Hoque1, Helen K. Saikia1
1Department of Mathematics, Gauhati University, Guwahati, 781014, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ankeny, N.C., Chowla, S.: On the divisibility of the class numbers of quadratic fields. Pac. J. Math. 5, 321–324 (1955)

Ankeny, N.C., Chowla, S., Hasse, H.: On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 217, 217–220 (1965)

Hartung, P.: Explicit construction of a class of infinitely many imaginary quadratic fields whose class number is divisible by 3. J. Number Theor. 6, 279–281 (1974)

Hoque, A., Saikia, K.: On generalized Mersenne prime. SeMA. 66, 1–7 (2014). doi: 10.1007/s40324-014-0019-4

Lang, S.D.: Note on the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 290, 70–72 (1977)

Nagel, T.: Uber die Klassenzahl imaginr quadratischer zahlkorper. Abh. Math. Semin. Univ. Hamburg 1, 140–150 (1922)

Osada, H.: Note on the class-number of the maximal real subfield of a cyclotomic field. Manuscr. Math. 58, 215–227 (1987)

Takeuchi, H.: On the class-number of the maximal real subfield of a cyclotomic field. Can. J. Math. 33(1), 55–58 (1981)

Watabe, M.: On class numbers of some cyclotomic fields. J. Reine Angew. Math. 301, 212–215 (1978)

Weinberger, P.J.: Real Quadratic fields with Class number divisible by $$n$$ n . J. Number Theor. 5, 237–241 (1973)

Yamaguchi, I.: On the class-number of the maximal real subfield of a cyclotomic field. J. Reine Angew. Math. 272, 217–220 (1975)

Yamamoto, Y.: On unramified Galois extensions of quadratic number fields. Osaka J. Math. 7, 57–76 (1979)