On fundamental equations of almost geodesic mappings of type π 2(e)

Hana Vavříková1, Josef Mikeš2, Olga Pokorná3, Galina A. Starko4
1Thomas Bata University, Zlín, Czech Republic
2Palacký University, Olomouc, Czech Republic
3Czech University of Agriculture, Praha 6, Czech Republic
4Odessa Academy of Civil Engineering and Architecture, Odessa, Ukraine

Tóm tắt

Từ khóa


Tài liệu tham khảo

N. S. Sinyukov, “Almost Geodesic Mappings of Affinely Connected Spaces and e-Structures,” Matem. Zametki 7(4), 449–459 (1970) [Math. Notes 7, 272–278 (1970)].

N. S. Sinyukov, Geodesic Mappings of Riemannian Spaces (Nauka, Moscow, 1979) [in Russian].

N. S. Sinyukov, “Almost Geodesic Mappings of Affinely Connected and Riemannian Spaces,” in Itogi Nauki Tekhn., Ser. Probl. Geom. 13, 3–26 (1982).

V. Berezovskij and J. Mikeš, “On the Classification of Almost Geodesic Mappings of Affine-Connected Spaces,” in Diff. Geom. and Appl. Proc. Conf. Dubrovnik/Yugosl. 1988 (1989), pp. 41–48.

V. Berezovskij and J. Mikeš, “On a Classification of Almost Geodesic Mappings of Affine Connection Spaces,” Acta Univ. Palacki. Olomuc, Fac. Rerum Nat., Math. 35, 21–24 (1996).

A. Adamów, “On Reduced Almost Geodesic Mappings in Riemannian Spaces,” Demonstr. Math. 15, 925–934 (1982).

K. R. Esenov, “On Properties of Generalized Equidistant Kähler Spaces Admitting Special Almost Geodesic Mappings of Second Type,” in Sborn. nauchn. trudov “Issledovaniya topologicheskikh i obobshennykh prostranstv” (Frunze, 1988), pp. 81–84.

J. Mikeš, “Holomorphically Projective Mappings and their Generalizations,” J. Math. Sci. 89, 1334–1353 (1998).

V. S. Shadnyi, “Almost Geodesic Maps of Riemannian Spaces onto Spaces of Constant Curvature,” Matem. Zametki 25, 151–153 (1979) [Math. Notes 25, 151–153 (1979)].

V. S. Sobchuk, “Interior Almost Geodesic Mapping,” Iz. VUZ. Matematika 33(5), 62–64 (1989).

V. S. Sobchuk “On Almost Geodesic Mappings in the Class of Semi-Symmetric Pseudo-Riemann Spaces,” Nauk. Visn. Chernivets’kogo Univ. Mat. 76, 107–108 (2000).

V. S. Sobchuk, O. Mikeš, and O. Pokorná, “On Almost Geodesic Mappings π2 between Semisymmetric Riemannian Spaces,” Novi Sad J. Math. 9(3), 309–312 (1999).

M. S. Stankovic, “On Canonic Almost Geodesic Mappings of the Second Type of Affine Spaces,” Filomat. 13, 105–144 (1999).

A. Z. Petrov, New Methods in Relativity Theory (Nauka, 1966) [in Russian].

J. Mikeš and N. S. Sinyukov, “On Quasiplanar Mappings of Spaces of Affine Connection,” Iz. VUZ. Matematika 27(1), 55–61 (1983) [Sov. Math. 27 (1), 63–70 (1983)].

J. Mikeš, “F-Planar Mappings onto Riemannian Spaces,” in Sborn. trudov mezhd. konf. “Invariantnye metody issledovanii na mogoobraziyah structur geometrii, analiza i matem. fiziki” 2 (MGU, 2001), pp. 138–145.

J. Mikeš, “Special F-Planar Mappings of Affinely Connected Spaces onto Riemannian Spaces,” Vestn. Mosk. Univ., Ser. I 3, 18–24 (1994) [Mosc. Univ. Math. Bull. 49 (3), 15–21 (1994)].