On fractional Orlicz–Sobolev spaces

Angela Alberico1, Andrea Cianchi2, Luboš Pick3, Lenka Slavíková3
1Istituto per le Applicazioni del Calcolo “M. Picone”, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
2Dipartimento di Matematica e Informatica “U. Dini”, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy
3Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Praha 8, Czech Republic

Tóm tắt

AbstractSome recent results on the theory of fractional Orlicz–Sobolev spaces are surveyed. They concern Sobolev type embeddings for these spaces with an optimal Orlicz target, related Hardy type inequalities, and criteria for compact embeddings. The limits of these spaces when the smoothness parameter$$s\in (0,1)$$s(0,1)tends to either of the endpoints of its range are also discussed. This note is based on recent papers of ours, where additional material and proofs can be found.

Từ khóa


Tài liệu tham khảo

Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Fractional Orlicz-Sobolev embeddings. J. Math. Pures Appl., to appear

Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: On the limit as $$s\rightarrow 0^+$$ of fractional Orlicz-Sobolev spaces. J. Fourier Anal. Appl. 26, no. 6, Paper No. 80, 19 pp (2020)

Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: On the limit as $$s\rightarrow 1^-$$ of possibly non-separable fractional Orlicz-Sobolev spaces. Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 31, 879–899 (2020)

Alberico, A., Cianchi, A., Pick, L., Slavíková, L.: Compact fractional Orlicz-Sobolev embeddings on domains. Preprint

Almgren, F.J. Jr. Lieb, E.H.: Symmetric decreasing rearrangement is sometimes continuous. J. Amer. Math. Soc. 2 (1989) 683–773

Baernstein II, A.: A unified approach to symmetrization. Partial differential equations of elliptic type (Cortona, : 47–91, p. 1994. Math., XXXV, Cambridge Univ. Press, Cambridge, Sympos (1992)

Barrios, B., Figalli, A., Valdinoci, E.: Bootstrap regularity for integro-differential operators and its application to nonlocal minimal surfaces. Ann. Sc. Norm. Super. Pisa Cl. Sci. 13, 609–639 (2014)

Bellazzini, J., Frank, R., Visciglia, N.: Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems. Math. Ann. 360, 653–673 (2014)

Bourgain, J., Brezis, H., Mironescu, P.: Another look at Sobolev spaces. In: Menaldi, J.L., Rofman, E., Sulem, A. (eds.) Optimal Control and Partial Differential Equations, pp. 439–455. IOS Press, Amsterdam (2001)

Bourgain, J., Brezis, H., Mironescu, P.: Limiting embedding theorems for $$W_{s,p}$$ when $$s\uparrow 1$$ and applications. Dedicated to the memory of Thomas H. Wolff. J. Anal. Math. 87, 77–101 (2002)

Bousquest, P., Ponce, A.C., Van Schaftingen, J.: Strong approximation of fractional Sobolev maps. J. Fixed Point Theory Appl. 15, 133–153 (2014)

Brasco, L., Cinti, E.: On fractional Hardy inequalities in convex sets. Discrete Contin. Dyn. Syst. 38, 4019–4040 (2018)

Brasco, L., Salort, A.: A note on homogeneous Sobolev spaces of fractional order. Ann. Mat. Pura Appl. 198, 1295–1330 (2019)

Brezis, H., Mironescu, P.: Gagliardo-Nirenberg inequalities and non-inequalities: the full story. Ann. Inst. H. Poincaré Anal. Non Linéaire 35, 1255–1376 (2018)

Brezis, H., Mironescu, P.: Where Sobolev interacts with Gagliardo–Nirenberg. J. Funct. Anal. 277, 2839–2864 (2019)

Brezis, H., Nguyen, H.M.: On the distributional Jacobian of maps from $${\mathbb{S}}^{\mathbb{N}}$$ into $${\mathbb{S}}^{\mathbb{N}}$$in fractional Sobolev and Hölder spaces. Ann. of Math. 173, 1141–1183 (2011)

Cabré, X., Fall, M.M., Solà-Morales, J., Weth, T.: Curves and surfaces with constant nonlocal mean curvature: meeting Alexandrov and Delaunay. J. Reine Angew. Math. 745, 253–280 (2018)

Cabré, X., Sire, Y.: Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles, and Hamiltonian estimates. Ann. Inst. H. Poincaré Anal. Non Linéaire 31, 23–53 (2014)

Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacians. Comm. Partial Differ. Equ. 32, 1245–1260 (2007)

Caffarelli, L., Salsa, S., Silvestre, L.: Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent. Math. 171, 425–461 (2008)

Caffarelli, L., Roquejoffre, S., Savin, O.: Nonlocal minimal surfaces. Commun. Pure Appl. Math. 63, 1111–1144 (2010)

Caffarelli, L., Valdinoci, E.: Uniform estimates and limiting arguments for nonlocal minimal surfaces. Calc. Var. Partial Differ. Equ. 41, 203–240 (2011)

Capolli, M., Maione, A., Salort, A. M., Vecchi, E.: Asymptotic behaviours in Fractional Orlicz-Sobolev spaces on Carnot groups. J. Geom. Anal. 1–34 (2020)

Carrillo, J.A., Figalli, A., Laurent, T., Slepčev, D.: Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations. Duke Math. J. 156, 229–271 (2011)

Chang, S.-Y.A.: Limit of fractional power Sobolev inequalities. J. Funct. Anal. 274, 1177–1201 (2018)

Chen, H., Weth, T.: The Dirichlet problem for the logarithmic Laplacian. Comm. Partial Differ. Equ. 44, 1100–1139 (2019)

Chen, S., Frank, R., Weth, T.: Remainder terms in the fractional Sobolev inequality. Indiana Univ. Math. J. 62, 1381–1397 (2013)

Cianchi, A.: An optimal embedding theorem for Orlicz-Sobolev spaces. Indiana Univ. Math. J. 45, 39–65 (1996)

Cianchi, A.: Boundedness of solutions to variational problems under general growth conditions. Comm. Partial Differ. Equ. 22, 1629–1646 (1997)

Cianchi, A.: Higher-order Sobolev and Poincaré inequalities in Orlicz spaces. Forum Math. 18, 745–767 (2006)

Costa, D.G., de Figueiredo, D.G., Yang, J.: On best constants for limiting embeddings of fractional Sobolev spaces. Adv. Nonlinear Stud. 10, 501–510 (2010)

Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Partial Differ. Equ. 15(4), 519–527 (2002)

De Nápoli, P., Fernández Bonder, J., Salort, A. M.: A Pólya–Szegő principle for general fractional Orlicz–Sobolev spaces. Complex Var. Elliptic Equ. 1–23, (2020)

Dyda, B., Frank, R.: Fractional Hardy–Sobolev–Maz’ya inequality for domains. Studia Math. 208, 151–166 (2012)

Dyda, B., Vähäkangas, A.V.: Characterizations for fractional Hardy inequality. Adv. Calc. Var. 8, 173–182 (2015)

Edmunds, D.E., Gurka, P., Opic, B.: Double exponential integrability of convolution operators in generalized Lorentz–Zygmund spaces. Indiana Univ. Math. J. 44, 19–43 (1995)

Fernández-Bonder, J., Salort, A.M.: Fractional order Orlicz–Sobolev spaces. J. Funct. Anal. 227, 333–367 (2019)

Figalli, A., Fusco, N., Maggi, F., Millot, V., Morini, M.: Isoperimetry and stability properties of balls with respect to nonlocal energies. Commun. Math. Phys. 336, 441–507 (2015)

Filippas, S., Moschini, L., Tertikas, A.: Sharp trace Hardy-Sobolev-Maz’ya inequalities and the fractional Laplacian. Arch. Ration. Mech. Anal. 208, 109–161 (2013)

Frank, R., Jin, T., Xiong. J.: Minimizers for the fractional Sobolev inequality on domains. Calc. Var. Partial Differ. Equ. 57 (2018) Art. 43, 31 pp

Fusco, N., Lions, P.-L., Sbordone, C.: Sobolev imbedding theorems in borderline cases. Proc. Am. Math. Soc. 124, 561–565 (1996)

Garsia, A.M., Rodemich, E.: Monotonicity of certain functionals under rearrangement. Ann. Inst. Fourier 24, 67–116 (1974)

Heuer, N.: On the equivalence of fractional-order Sobolev semi-norms. J. Math. Anal. Appl. 417, 505–518 (2014)

Kuusi, T., Mingione, G., Sire, Y.: Nonlocal self-improving properties. Anal. PDE 8, 57–114 (2015)

Ludwig, M.: Anisotropic fractional Sobolev norms. Adv. Math. 252, 150–157 (2014)

Mallick, A.: Extremals for fractional order Hardy–Sobolev–Maz’ya inequality. Calc. Var. Partial Differ. Equ. 58 (2019) Art. 45, 37 pp

Marano, S., Mosconi, S.J.N.: Asymptotics for optimizers of the fractional Hardy–Sobolev inequality. Commun. Contemp. Math. 21, 1850028 (2019). 33 pp

Maz’ya, V.G.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Springer, Berlin (2011)

Maz’ya, V.G., Shaposhnikova, T.: On the Brezis and Mironescu conjecture concerning a Gagliardo–Nirenberg inequality for fractional Sobolev norms. J. Math. Pures Appl. 81, 877–884 (2002)

Maz’ya, V.G., Shaposhnikova, T.: On the Bourgain, Brézis and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces. J. Funct. Anal. 195, 230–238 (2002)

Maz’ya, V.G., Shaposhnikova, T.: Theory of Sobolev Multipliers, with Applications to Differential and Integral Operators. Springer, Berlin (2009)

Musina, R., Nazarov, A.I.: A note on truncations in fractional Sobolev spaces. Bull. Math. Sci. 9, 1950001 (2019). 7 pp

Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

Parini, E., Ruf, B.: On the Moser–Trudinger inequality in fractional Sobolev–Slobodeckij spaces. J. Anal. Math. 138, 281–300 (2019)

Pohozhaev, S.I.: On the imbedding Sobolev theorem for $$pl=n$$. Doklady Conference Section Math. Moscow Power Inst. 165, 158–170 (1965). (Russian)

Ros-Oton, X., Serra, J.: The Pohozaev identity for the fractional Laplacian. Arch. Ration. Mech. Anal. 213, 587–628 (2014)

Ros-Oton, X., Serra, J.: Boundary regularity for fully nonlinear integro-differential equations. Duke Math. J. 165, 2079–2154 (2016)

Salort, A.M.: Hardy inequalities in fractional Orlicz-Sobolev spaces. Publ. Mat., to appear

Seeger, A., Trebels, W.: Embeddings for spaces of Lorentz–Sobolev type. Math. Ann. 373, 1017–1056 (2019)

Tzirakis, K.: Sharp trace Hardy–Sobolev inequalities and fractional Hardy–Sobolev inequalities. J. Funct. Anal. 270, 4513–4539 (2016)

Trudinger, N.S.: On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

Van Schaftingen, J., Willem, M.: Set transformations, symmetrizations and isoperimetric inequalities. Nonlinear analysis and applications to physical sciences, 135–152, Springer Italia, Milan, 2004

Yudovich, V.I.: Some estimates connected with integral operators and with solutions of elliptic equations. Soviet Math. Doklady 2, 746–749 (1691)

Zhou, Y.: Fractional Sobolev extension and imbedding. Trans. Am. Math. Soc. 367, 959–979 (2015)