On fixed points of rational contractions in generalized parametric metric and fuzzy metric spaces

Springer Science and Business Media LLC - Tập 2021 - Trang 1-15 - 2021
Thounaojam Stephen1, Yumnam Rohen1, Nabil Mlaiki2, Mairembam Bina3, Nawab Hussain4, Doaa Rizk5
1Department of Mathematics, National Institute of Technology Manipur, Langol, India
2Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia
3Department of Mathematics, D. M. University, Manipur, India
4Department of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia
5Department of Mathematics, College of Science and Arts, Qassim University, Al-Asyah, Saudi Arabia

Tóm tắt

We introduce the notion of generalized parametric metric spaces along with the study of its various properties. Further, we prove some new fixed point theorems for $(\alpha ,\psi )$ -rational-type contractive mappings in generalized parametric metric spaces. As a consequence, we deduce fixed point theorems for $(\alpha , \psi )$ -rational-type contractive mappings in partially ordered rectangular generalized fuzzy metric spaces.

Tài liệu tham khảo

Hussain, N., Khaleghizadeh, S., Salimi, P., Abdou, A.A.N.: A new approach to fixed point results in triangular intuitionistic fuzzy metric spaces. Abstr. Appl. Anal. 2014, Article ID 690139 (2014) Hussain, N., Salimi, P., Parvaneh, V.: Fixed point results for various contractions in parametric and fuzzy b-metric spaces. J. Nonlinear Sci. Appl. 8, 719–739 (2015) Tas, N., Ozgus, N.Y.: On parametric S-metric spaces and fixed point type theorems for expansive mappings. J. Math. 2016, Article ID 4746732 (2016) Priyobarta, N., Rohen, Y., Radenovic, S.: Fixed point theorems on parametric A-metric space. Am. J. Appl. Math. Statistics 6(1), 1–5 (2018) Branciari, A.: A fixed point theorem of Banach–Caccioppoli type on a class of generalized metric spaces. Publ. Math. (Debr.) 57, 31–37 (2000) Suzuki, T.: Generalized metric spaces do not have the compatible topology. Abstr. Appl. Anal. 2014, Article ID 458098 (2014) Rao, K.P.R., Babu, D.V., Ramudu, E.T.: Some unique common fixed point theorems in parametric S-metric spaces. Int. J. Innov. Res. Sci., Eng. Technol. 3, 14375–14387 (2014) Krishnakumar, R., Sanatammappa, N.P.: Some fixed point theorems in parametric b-metric space. Int. J. Math. Sci. Eng. Appl. 10, 99–106 (2016) Tas, N., Ozgur, N.Y.: Some fixed point results on parametric \(N_{b}\)-metric spaces. Commun. Korean Math. Soc. 33, 943–960 (2018) Daheriya, R.D., Shrivastava, S., Ughade, M.: Parametric metric space, parametric b-metric space and expansive type mapping. Int. J. Math. Appl. 4, 107–117 (2016) Jain, R., Daheriya, R.D., Ughade, M.: Fixed point, coincidence point and common fixed point theorems under various expansive conditions in parametric metric spaces and parametric b-metric spaces. Gazi Univ. J. Sci. 29, 95–107 (2016) Likhitker, M., Daheriya, R.D., Ughade, M.: Common fixed point theorems in parametric metric spaces under nonlinear type contractions. Int. J. Math. Arch. 7, 105–109 (2016) Posul, H., Kutukeu, S.: On parametric spaces. Bull. Math. Stat. Res. 5, 17–20 (2017) Tas, N., Ozgur, N.Y.: On parametric S-metric spaces and fixed point type theorems for expansive mappings. J. Math. 2016, Article ID 4746732 (2016). https://doi.org/10.1155/2016/4746732 Ege, O., Karaca, I.: Fixed point theorems and an application in parametric metric space. Azerb. J. Math. 7, 27–39 (2017) Krishnakumar, R., Sanatammappa, N.P.: Fixed point theorems in parametric metric space. Int. J. Math. Res. 8, 213–220 (2016) Ege, O., De le Sen, M.: A new perspective on parametric metric spaces. Mathematics 7, 1008 (2019) Bakhru, A., Ughade, M., Gupta, R.: A new common fixed point theorem for two pairs of mappings in parametric metric space. J. Adv. Math. Comput. Sci. 35(4), 87–105 (2020) Kataria, H.R., Patel, P.H., Shah, V.: Existence results of noninstantaneous impulsive fractional integro-differential equation. Demonstr. Math. 53, 373–384 (2020) Vetro, F.: Fixed point for alpha-Theta-phi-contractions and first-order periodic differential problem. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 113(3), 1823–1837 (2019) Wairojjana, N., Pakkaranang, N., Pholasa, N.: Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces. Demonstr. Math. 54, 110–128 (2021) Roshan, J.R., Parvaneh, V., Kadelburg, Z., Hussain, N.: New fixed point results in b-rectangular metric spaces. Nonlinear Anal., Model. Control 21(5), 614–634 (2016) Mustafa, Z., Parvaneh, V., Jaradat, M.M.M., Kadelburg, Z.: Extended rectangular b-metric spaces and some fixed point theorems for contractive mappings. Symmetry 11(4), 594 (2019) Latif, A., Roshan, J.R., Parvaneh, V., Hussain, N.: Fixed point results via α-admissible mappings and cyclic contractive mappings in partial b-metric spaces. J. Inequal. Appl. 2014, 345 (2014) Ciric, Lj., Parvaneh, V., Hussain, N.: Fixed point results for weakly α-admissible pairs. Filomat 30(14), 3697–3713 (2016) Samet, B., Vetro, C., Vetro, P.: Fixed point theorem for α–ψ contractive mappings. Nonlinear Anal. 75, 2154–2165 (2012) Hussain, N., Karapinar, E., Salimi, P., Akbar, F.: α-admissible mappings and related fixed point theorems. J. Inequal. Appl. 2013, 114 (2013) Salimi, P., Latif, A., Hussain, N.: Modified α–ψ-contractive mappings with applications. Fixed Point Theory Appl. 2013, 151 (2013) Alsulami, H.H., Chandok, S., Aziz Taoudi, M., Erhan, I.M.: Some fixed point theorems for \((\alpha ,\psi )\)-rational type contractive mappings. Fixed Point Theory Appl. 2015, 97 (2015) Aydi, H., Karapinar, E., Samet, B.: Fixed point for generalized \((\alpha ,\psi )\)-contractions on generalized metric spaces. J. Inequal. Appl. 2014, 229 (2014) Karapinar, E.: Discussion on \((\alpha ,\psi )\) contractions on generalized metric spaces. Abstr. Appl. Anal. 2014, Article ID 962784 (2014) Schweizer, B., Sklar, A.: Statistical metric spaces. Pac. J. Math. 10, 314–334 (1960)