On finding maximum-cardinality symmetric subsets
Tài liệu tham khảo
Akutsu, 1998, On determining the congruence of point sets in d dimensions, Computation Geometry, 9, 247, 10.1016/S0925-7721(97)00010-2
Akutsu, 1998, Distribution of distances and triangles in a point set and algorithms for computing the largest common point set, Discrete Comput. Geom., 20, 307, 10.1007/PL00009388
Alt, 1988, Congruence, similarity, and symmetries of geometric objects, Discrete Comput. Geom., 3, 237, 10.1007/BF02187910
Alt, 1999, Resemblance of geometric objects, 121
Atallah, 1985, On symmetry detection, IEEE Trans. Comput., 34, 663, 10.1109/TC.1985.1676605
Boxer, 1993, Parallel algorithms for all maximal equally-spaced collinear sets and all maximal regular coplanar lattices, Pattern Recognition Lett., 14, 14, 10.1016/0167-8655(93)90128-Z
Braß, 2000, Exact point pattern matching and the number of congruent triangles, 1879, 112
Braß, 2000, Testing the congruence of d-dimensional point sets, 310
Eades, 1988, Symmetry finding algorithms, 6, 41
Eades, 1987, An algorithm for detecting symmetries in drawings, Ars Comb., 23A, 95
Elekes, 1994, Similar configurations and pseudo grids, 63, 85
Highnam, 1986, Optimal algorithms for finding the symmetries of a planar point set, Inform. Process. Lett., 22, 219, 10.1016/0020-0190(86)90097-9
Iwanowski, 1991, Testing approximate symmetry in the plane is NP-hard, Theoret. Comput. Sci., 80, 227, 10.1016/0304-3975(91)90389-J
Jiang, 1996, Detection of rotational and involutional symmetries and congruity of polyhedra, The Visual Computer, 12, 193, 10.1007/BF01782322
Kahng, 1991, Optimal algorithms for extracting spatial regularity in images, Inform. Process. Lett., 12, 757
Laczkovich, 1997, The number of homothetic subsets, 14, 294
Pach, 1995
J. Pach, G. Tardos, Personal communication
Robins, 1999, On detecting spatial regularity in noisy images, Inform. Process. Lett., 69, 189, 10.1016/S0020-0190(99)00013-7
J. Solymosi, C.D. Tóth, The k most frequent distances in the plane, manuscript