On equivalency of various geometric structures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adamòw A., Deszcz R.: On totally umbilical submanifolds of some class of Riemannian manifolds. Demonstr. Math. 16, 39–59 (1983)
Cahen M., Parker M.: Sur des classes d’espaces pseudo-riemanniens symmetriques. Bull. Soc. Math. Belgian 22, 339–354 (1970)
Cahen M., Parker M.: Pseudo-Riemannian symmetric spaces. Mem. Am. Math. Soc. 24(229), 1–108 (1980)
Cartan E.: Sur une classe remarquable d’espaces de Riemannian. Bull. Soc. Math. France 54, 214–264 (1926)
Chaki M.C.: On pseudosymmetric manifolds. An. Ştiinţ. ale Univ. AL. I. Cuza din Iaşi N. Ser. Secţ. Ia 33, 53–58 (1987)
Chongshan L.: On concircular transformations in Riemannian spaces. J. Aust. Math. Soc. (Ser. A) 40, 218–225 (1986)
Defever F., Deszcz R.: On semi-Riemannian manifolds satisfying the condition R· R = Q(S,R). Geometry and topology of Submanifolds. World Sci. Publ. 3, 108–130 (1990)
Defever F., Deszcz R.: On warped product manifolds satisfying a certain curvature condition. Atti. Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 69, 213–236 (1991)
Defever F., Deszcz R., Hotloś M., Kucharski M., Sentürk Z.: Generalisations of Robertson–Walker spaces. Ann. Univ. Sci. Budapest Rolando Eötvös Sect. Math. 43, 13–24 (2000)
Desai P., Amur K.: On W-recurrent spaces. Tensor N.S. 29, 98–102 (1975)
Desai P., Amur K.: On symmetric spaces. Tensor N.S. 29, 119–124 (1975)
Deszcz, R.: Notes on totally umbilical submanifolds. Geometry and topology of submanifolds, Luminy, May 1987. World Sci. Publ. (Singapore) 1989, 89–97 (1987)
Deszcz R.: On pseudosymmetric spaces. Bull. Belgian Math. Soc. Ser. A 44, 1–34 (1992)
Deszcz R., Glogowska M.: Some examples of nonsemisymmetric Ricci-semisymmetric hypersurfaces. Colloq. Math. 94, 87–101 (2002)
Deszcz R., Glogowska M., Hotloś M., Sentürk Z.: On certain quasi-Einstein semi-symmetric hypersurfaces. Ann. Univ. Sci. Budapest Rolando Eötvös Sect. Math. 41, 151–164 (1998)
Deszcz, R., Glogowska, M., Hotloś, M., Sawicz, K.: A survey on generalized Einstein metric conditions. Advances in Lorentzian geometry. In: Plaue, M., Rendall, A.D., Scherfner, M. (eds.) Proceedings of the Lorentzian geometry conference in Berlin, AMS/IP studies in advanced mathematics, vol. 49 [Yau, S.-T. (series ed.)], pp. 27–46 (2011)
Deszcz R., Grycak W.: On some class of warped product manifolds. Bull. Inst. Math. Acad. Sinica 15, 311–322 (1987)
Deszcz R., Hotloś M.: On hypersurfaces with type number two in spaces of constant curvature. Ann. Univ. Sci. Budapest Rolando Eötvös Sect. Math. 46, 19–34 (2003)
Deszcz, R., Hotloś, M., Jełowicki, J., Kundu, H., Shaikh, A. A.: Curvature properties of Gödel metric. Int. J. Geom. Method Mod. Phys. 11(1450025), 20 (2013). doi: 10.1142/S021988781450025X
Dubey R.S.D.: Generalized recurrent spaces. Indian J. Pure Appl. Math. 10, 1508–1513 (1979)
Ewert-Krzemieniewski S.: On some generalisation of recurrent manifolds. Math. Pannonica 4(2), 191–203 (1993)
Garai R.K.: On recurrent spaces of first order. Ann. della Scuola Norm. Super. di Pisa Sci. Fis. Mat. III. Ser. 26(4), 889–909 (1972)
Glodek E.: A note on Riemannian spaces with recurrent projective curvature. Prace nauk. Inst. Mat. Fiz. teor. Politechniki Wroclaw. Ser. Studia Materialy 1, 9–12 (1970)
Glogowska M.: Semi-Riemannian manifolds whose Weyl tensor is a Kulkarni-Nomizu square. Publ. Inst. Math. (Beograd) 72:86, 95–106 (2002)
Ishii Y.: On conharmonic transformation. Tensor N.S. 7, 73–80 (1957)
Kowalczyk D.: On the Reissner–Nordström-de Sitter type spacetimes. Tsukuba J. Math. 30, 263–281 (2006)
Lee, J.M.: Riemannian manifold: an introduction to curvature. Graduate Text in Mathematics, vol. 176. Springer-Verlag, New York (1997)
Mikeš J.: Geodesic mappings of affine-connected and Riemannian spaces (English). J. Math. Sci. (New York) 78(3), 311–333 (1996)
Mikeš J., Vanžurová A., Hinterleitner I.: Geodesic Mappings and Some Generalizations. Palacky University Press, Olomouc (2009)
Olszak K., Olszak Z.: On pseudo-Riemannian manifolds with recurrent concircular curvature tensor. Acta Math. Hungarica 137(1–2), 64–71 (2012)
Petrović-Torgasev M., Verstraelen L.: On the concircular curvature tensor, the projective curvature tensor and the Einstein curvature tensor of Bochner–Kaehler manifolds. Math. Rep. Toyama Univ. 10, 37–61 (1987)
Pokhariyal G.P.: Relativistic significance of curvature tensors. Int. J. Math. Math. Sci. 5(1), 133–139 (1982)
Pokhariyal G.P., Mishra R.S.: Curvature tensor and their relativistic significance. Yokohama Math. J. 18(2), 105–108 (1970)
Pokhariyal G.P., Mishra R.S.: Curvature tensor and their relativistic significance II. Yokohama Math. J. 19(2), 97–103 (1971)
Prasad B.: A pseudo projective curvature tensor on a Riemannian manifold. Bull. Calcutta Math. Soc. 94(3), 163–166 (2002)
Prasad B., Maurya A.: Quasi concircular curvature tensor on a Riemannian manifold. News Bull. Calcutta Math. Soc. 30, 5–6 (2007)
Prasad B., Doulo K., Pandey P.N.: Generalized quasi-conformal curvature tensor on a Riemannian manifold. Tensor N.S. 73, 188–197 (2011)
Rahaman, M.S., Lal, S.: On the concircular curvature tensor of Riemannian manifolds. International Centre for Theoretical Physics, Miramare-Trieste, Italy (1990)
Ruse H.S.: On simply harmonic “kappa spaces” of four dimensions. Proc. Lond. Math. Soc. 50, 317–329 (1948)
Ruse H.S.: Three dimensional spaces of recurrent curvature. Proc. Lond. Math. Soc. 50, 438–446 (1948)
Selberg A.: Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series. Indian J. Math. 20, 47–87 (1956)
Shaikh, A.A., Al-Solamy, F.R., Roy, I.: On the existence of a new class of semi-Riemannian manifolds. Math. Sci. 7:46, 1–13 (2013)
Shaikh, A.A., Deszcz, R., Hotloś, M., Jełowicki, J., Kundu, H., On pseudosymmetric manifolds (2013, preprint)
Shaikh A.A., Jana S.K.: A pseudo quasi-conformal curvature tensor on a Riemannian manifold. South East Asian J. Math. Math. Sci. 4(1), 15–20 (2005)
Shaikh A.A., Patra A.: On a generalized class of recurrent manifolds. Arch. Math. (Brno) 46, 39–46 (2010)
Shaikh A.A., Roy I.: On quasi generalized recurrent manifolds. Math. Pannonica 21(2), 251–263 (2010)
Shaikh A.A., Roy I.: On weakly generalized recurrent manifolds. Ann. Univ. Sci. Budapest Rolando Eötvös Sect. Math. 54, 35–45 (2011)
Singh J.P.: On m-projective recurrent Riemannian manifold. Int. J. Math. Anal. Ruse 6(24), 1173–1178 (2012)
Soós, G.: Ü ber die Geodätischen Abbildungen Von Riemannschen Räumen auf Projectiv-symmetrische Riemannsche Räume. Acta Acad. Sci. Hungarica 9, 359–361 (1958)
Szabò, Z.I.: Structure theorems on Riemannian spaces satisfying R(X,Y)· R = 0, I (the local version). J. Diff. Geom. 17, 531–582 (1982)
Tachibana S.: A theorem on Riemannian manifolds of positive curvature operator. Proc. Jpn. Acad. 50, 301–302 (1974)
Tamássy L., Binh T.Q.: On weakly symmetric and weakly projective symmetric Riemannian manifolds. Colloq. Math. Soc. János Bolyai 50, 663–670 (1989)
Tripathi M.M., Gupta P.: τ-Curvature tensor on a semi-Riemannian manifold. J. Adv. Math. Stud. 4(1), 117–129 (2011)
Weyl H.: Zur Infinitesimalgeometrie: Einordnung der projektiven und konformen Auffassung. Nachrichten der Königlichen Gesellschaft der Wissenschaften zu Göttingen. Mathematische-physikalische Klasse 1921, 99–112 (1921)
Yano, K.: Concircular geometry, I–IV, Proc. Imp. Acad. Tokyo 16, 195–200, 354–360, 442–448, 505–511 (1940)