On dual brownian motions with oblique reflection

Lithuanian Mathematical Journal - Tập 14 - Trang 227-232 - 1974
R. Kudžma1,2, D. Surgailis1,2
1V. Kapsukas Vilnius State University, USSR
2Institute of Physics and Mathematics, Academy of Sciences of the Lithuanian SSR, USSR

Tài liệu tham khảo

R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Academic Press, New York (1968). M. Nagasawa, “The adjoint process of a diffusion with reflecting barrier,” Kodai Math. Semin. Repts.,13, 235–248 (1961). M. Nagasawa, “Branching Markov processes and semilinear parabolic equations,” Soviet-Japanese Symposium on Probability Theory, Khabarovsk (1969), pp. 257–278. M. Nagasawa, “Markov processes with creation and annihilation,” Z. Wahrscheinlichkeitstheorie Verw. Geb.,14, 49–60 (1969). E. Nelson, “The adjoint Markov process,” Duke Math. J.,25, 671–690 (1958). J. Walsh, “Markov processes and their functionals in duality,” Z. Wahrscheinlichkeitstheorie Verw. Geb.,24, 229–246 (1972). K. Yosida, Functional Analysis, Springer, Berlin (1966). O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Ural'tseva, Linear and Quasilinear Parabolic Equations [in Russian], Nauka, Moscow (1967). H. P. McKean, Stochastic Integrals, Academic Press, New York (1969). M. I. Freidlin, “Diffusion processes with reflection and the problem with a skew derivative on a manifold with a boundary,” Teor. Veroyat. i Ee Prim.,8, 1, 80–88 (1963).