On doubly twisted product immersions

Afrika Matematika - Tập 32 Số 5-6 - Trang 733-743 - 2021
Abdoul Salam Diallo1, Fortuné Massamba2
1School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Private Bag X01, 3209, Scottsville, South Africa
2School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Scottsville, South Africa

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49 (1969)

Chen, B.Y.: On isometric minimal immersions from warped products into real space forms. Proc. Edinburgh Math. Soc. 45, 579–587 (2002)

Chen, B.Y.: On warped product immersions. J. Geom. 82, 36–49 (2005)

Chen, B.Y.: Pseudo-Riemannian geometry, $$\delta $$-Invariants and Applications. World Scientific Publishing Company, Singapore (2011)

Dajczer, M., Vlachos, T.: Isometric immersions of warped product. Proc. Am. Math. Soc. 141(5), 1795–1803 (2013)

Dillen, F., Nolker, S.: Semi-parallelity, multi-rotation surfaces and their helix property. J. Reine Angew. Math. 435, 33–63 (1993)

Faghfouri, M., Majidi, A.: On doubly warped product immersions. J. Geom. 106, 243–254 (2015)

Fernadez-Lopez, M., Garcia-Rio, E., Kupeli, D., Unal, B.: A curvature condition for a twisted product to be a warped product. Manuscripta Math. 106, 213–217 (2001)

Ferus, D.: Produkt-Zerlegung von Immersionen mit paralleler zweiter Fundamentalform. Math. Ann. 211, 1–5 (1974)

Grosser, M., Kunzinger, M., Oberguggenberger, M., Steinbauer, R.: Geometric theory of generalized functions with applications to general relativity, vol. 537. Kluwer Academic Publishers, Dordrecht (2001)

Hiepko, S.: Eine innere Kennzeichnung der verzerrten Produkte. Math. Ann. 241(3), 209–215 (1979)

Kazan, S., Sahin, B.: Characterizations of twisted product manifolds to be warped product manifolds. Acta Math. Univ. Comenian. (N.S.) 82(2), 253–263 (2013)

Moore, J.D.: Isometric immersions of Riemannian products. J. Differ. Geom. 5, 159–168 (1971)

Nolker, S.: Isometric immersions of warped products. Differ. Geom. Appl. 6, 1–30 (1996)

Olteanu, A.: A general inequality for doubly warped product submanifolds. Math. J. Okayama Univ. 52, 133–142 (2010)

O’Neill, B.: Semi-riemannian geometry with applications to relativity. Academic Press, London (1983)

Ponge, R., Reckziegel, H.: Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48(1), 15–25 (1993)