On convergence of approximate solutions to the compressible Euler system

Annals of PDE - Tập 6 Số 2 - 2020
Eduard Feireisl1, Martina Hofmanová2
1Institute of Mathematics of the Academy of Sciences of the Czech Republic Žitná 25, 115 67 Praha 1, Czech Republic
2Fakultät für Mathematik, Universität Bielefeld, Postfach 100131, D-33501, Bielefeld, Germany

Tóm tắt

AbstractWe consider a sequence of approximate solutions to the compressible Euler system admitting uniform energy bounds and/or satisfying the relevant field equations modulo an error vanishing in the asymptotic limit. We show that such a sequence either (i) converges strongly in the energy norm, or (ii) the limit is not a weak solution of the associated Euler system. This is in sharp contrast to the incompressible case, where (oscillatory) approximate solutions may converge weakly to solutions of the Euler system. Our approach leans on identifying a system of differential equations satisfied by the associated turbulent defect measure and showing that it only has a trivial solution.

Từ khóa


Tài liệu tham khảo

Alibert, J.J., Bouchitté, G.: Non-uniform integrability and generalized Young measures. J. Convex Anal. 4(1), 129–147 (1997)

Ball, J.M., Murat, F.: Remarks on Chacons biting lemma. Proc. Am. Math. Soc. 107, 655–663 (1989)

Basarić, D.: Vanishing viscosity limit for the compressible Navier-Stokes system via measure-valued solutions. Arxive Preprint Series, ArXiv:1903.05886, 2019 (1903)

Bechtel, S.E., Rooney, F.J., Forest, M.G.: Connection between stability, convexity of internal energy, and the second law for compressible Newtonian fuids. J. Appl. Mech. 72, 299–300 (2005)

Breit, D., Feireisl, E., Hofmanová, M.: Dissipative solutions and semiflow selection for the complete Euler system. Arxive Preprint Series, ArXiv:1904.00622: To appear in Commun. Math. Phys. (2019)

Buckmaster, T., Vicol, V.: Convex integration and phenomenologies in turbulence. Arxiv Preprint Series, 2019. ArXiv:1901.09023v2

Březina, J., Feireisl, E.: Measure-valued solutions to the complete Euler system. J. Math. Soc. Jpn. 70(4), 1227–1245 (2018)

Chen, G.-Q., Frid, H., Li, Y.: Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics. Commun. Math. Phys. 228(2), 201–217 (2002)

Chen, G.Q., Glimm, J.: Kolmogorov-type theory of compressible turbulence and inviscid limit of the Navier-Stokes equations in $${R}^3$$. Arxive Preprint Series, ArXiv:1809.09490, 2018 (1809)

Chiodaroli, E.: A counterexample to well-posedness of entropy solutions to the compressible Euler system. J. Hyperbolic Differ. Equ. 11(3), 493–519 (2014)

Chiodaroli, E., De Lellis, C., Kreml, O.: Global ill-posedness of the isentropic system of gas dynamics. Commun. Pure Appl. Math. 68(7), 1157–1190 (2015)

Chiodaroli, E., Kreml, O.: On the energy dissipation rate of solutions to the compressible isentropic Euler system. Arch. Ration. Mech. Anal. 214(3), 1019–1049 (2014)

Chiodaroli, E., Kreml, O., Mácha, V., Schwarzacher, S.: Non–uniqueness of admissible weak solutions to the compressible Euler equations with smooth initial data. Arxiv Preprint Series, ArXiv:1812.09917v1, 2019

Constantin, P., Vicol, V.: Remarks on high Reynolds numbers hydrodynamics and the inviscid limit. J. Nonlinear Sci. 28(2), 711–724 (2018)

Dafermos, C.M.: The second law of thermodynamics and stability. Arch. Rational Mech. Anal. 70, 167–179 (1979)

De Lellis, C., Székelyhidi Jr., L.: On admissibility criteria for weak solutions of the Euler equations. Arch. Ration. Mech. Anal. 195(1), 225–260 (2010)

DiPerna, R.J., Majda, A.: Reduced hausdorff dimension and concentration-cancellation for two dimensional incompressible flow. J. Am. Math. Soc. 1(1), 59–95 (1988)

DiPerna, R.J., Majda, A.J.: Concentrations in regularizations for 2-d incompressible flow. Commun. Pure Appl Math 40(3), 301–345 (1987)

DiPerna, R.J., Majda, A.: Reduced Hausdorff dimension and concentration cancellation for two-dimensional incompressible flow. J. Am. Math. Soc. 1, 59–95 (1988)

Feireisl, E.: Vanishing dissipation limit for the Navier-Stokes-Fourier system. Commun. Math. Sci. 14(6), 1535–1551 (2016)

Feireisl, E., Lukáčová-Medvidová, M.: Convergence of a mixed finite element finite volume scheme for the isentropic Navier–Stokes system via dissipative measure–valued solutions. 2017. arxiv preprint ArXiv:1608.06149

Feireisl, E., Lukáčová-Medvidová, M., Mizerová, H.: $${\cal{K}}-$$convergence as a new tool in numerical analysis. 2019. arxiv preprint ArXiv:1904.00297

Feireisl, E., Lukáčová-Medvidová, M., Mizerová, H., She, B., Wang, Y.: Computing oscillatory solutions to the Euler system via $${\cal{K}}$$-convergence. 2019. arxiv preprint ArXiv:1910.03161

Fjordholm, U.K., Käppeli, R., Mishra, S., Tadmor, E.: Construction of approximate entropy measure valued solutions for hyperbolic systems of conservation laws. Found. Comp. Math. 17(3), 1–65 (2015)

Fjordholm, U.S., Lye, K., Mishra, S., Weber, F.: Statistical solutions of hyperbolic systems of conservation laws: numerical approximation. Arxive Preprint Series, ArXiv:1906.02536, 2019 (1906)

Fjordholm, U.S., Mishra, S., Tadmor, E.: On the computation of measure-valued solutions. Acta Numer. 25, 567–679 (2016)

Galdi, G.P.: An introduction to the mathematical theory of the Navier–Stokes equations. I. Springer, New York (1994)

Greengard, C., Thomann, E.: On DiPerna-Majda concentration sets for two-dimensional incompressible flow. Commun. Pure Appl. Math. 41(3), 295–303 (1988)

Gwiazda, P., Świerczewska-Gwiazda, A., Wiedemann, E.: Weak-strong uniqueness for measure-valued solutions of some compressible fluid models. Nonlinearity 28(11), 3873–3890 (2015)

Sprung, B.: Upper and lower bounds for the Bregman divergence. J. Inequal. Appl. 12, 4 (2019)

Sueur, F.: On the inviscid limit for the compressible Navier–Stokes system in an impermeable bounded domain. J. Math. Fluid Mech. 16(1), 163–178 (2014)

Wienan, E.: Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation. Acta Math. Sin. 16(2), 207–218 (2000)