On contact type hypersurfaces in 4-space

Springer Science and Business Media LLC - Tập 228 - Trang 493-534 - 2021
Thomas E. Mark1, Bülent Tosun2
1Department of Mathematics, University of Virginia, Charlottesville, USA
2Department of Mathematics, University of Alabama, Tuscaloosa, USA

Tóm tắt

We consider constraints on the topology of closed 3-manifolds that can arise as hypersurfaces of contact type in standard symplectic $${\mathbb {R}}^4$$ . Using an obstruction derived from Heegaard Floer homology we prove that no Brieskorn homology sphere admits a contact type embedding in $${\mathbb {R}}^4$$ , a result that has bearing on conjectures of Gompf and Kollár. This implies in particular that no rationally convex domain in $${\mathbb {C}}^2$$ has boundary diffeomorphic to a Brieskorn sphere. We also give infinitely many examples of contact 3-manifolds that bound Stein domains in $${\mathbb {C}}^2$$ but not domains that are symplectically convex with respect to the standard symplectic structure; in particular we find Stein domains in $${\mathbb {C}}^2$$ that cannot be made Weinstein with respect to the ambient symplectic structure while preserving the contact structure on their boundaries. Finally, we observe that any strictly pseudoconvex, polynomially convex domain in $${\mathbb {C}}^2$$ having rational homology sphere boundary is diffeomorphic to the standard 4-ball.

Tài liệu tham khảo

Akbulut, S.: A fake compact contractible 4-manifold. J. Differ. Geom. 33(2), 335–356 (1991) Akbulut, S., Karakurt, Ç.: Action of the cork twist on Floer homology. In: Proceedings of the Gökova Geometry-Topology Conference 2011, pp. 42–52. International Press, Somerville, MA (2012) Casson, A., Harer, J.: Some homology lens spaces which bound rational homology balls. Pac. J. Math. 96(1), 23–36 (1981) Chen, W.: Contact splitting of symplectic \(\mathbb{Q}\)-homology \({\mathbb{CP}}^{2}\). In: Proceedings of the Gökova Geometry-Topology Conference 2017, pp. 53–72. International Press, Somerville, MA (2018) Cieliebak, K., Eliashberg, Y.: From Stein to Weinstein and Back-Symplectic Geometry of Affine Complex Manifolds, vol. 59. American Mathematical Society, Providence (2012) Cieliebak, K., Eliashberg, Y.: The topology of rationally and polynomially convex domains. Invent. Math. 199(1), 215–238 (2015) Colin, V., Ghiggini, P., Honda, K.: \(HF = ECH\) via open book decompositions: a summary. arXiv:1103.1290 Colin, V., Ghiggini, P., Honda, K.: The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus. arXiv:1208.1526 Colin, V., Honda, K., Ghiggini, P.: The equivalence of Heegaard Floer homology and embedded contact homology. arxiv:1208.1074, arXiv:1208.1077, arXiv:1208.1526 Daemi, A., Lidman, T., Vela-Vick, D.S., Michael Wong, C.M.: Ribbon homology cobordisms. arXiv:1904.09721 Donaldson, S.K.: An application of gauge theory to four-dimensional topology. J. Differ. Geom. 18(2), 279–315 (1983) Duval, J., Sibony, N.: Polynomial convexity, rational convexity, and currents. Duke Math. J. 79(2), 487–513 (1995) Echeverria, M.: Naturality of the contact invariant in monopole Floer homology under strong symplectic cobordisms. Algebr. Geom. Topol. 20, 1795–1875 (2020) Eliashberg, Y.: Filling by Holomorphic Discs and Its Applications. Geometry of Low-Dimensional Manifolds, 2 (Durham, 1989). London Mathematical Society Lecture Note Series, vol. 151, pp. 45–67. Cambridge University Press, Cambridge (1990) Eliashberg, Y.: Topological characterization of stein manifolds of dimension \(>2\). Int. J. Math. 1(1), 29–46 (1990) Epstein, D.B.A.: Embedding punctured manifolds. Proc. Am. Math. Soc. 16, 175–176 (1965) Etnyre, J.B.: Planar open book decompositions and contact structures. IMRN 79, 4255–4267 (2004) Etnyre, J.B., Honda, K.: On the nonexistence of tight contact structures. Ann. Math. (2) 153(3), 749–766 (2001) Fintushel, R., Stern, R.J.: \({{\rm O}}(2)\) actions on the 5-sphere. Invent. Math. 87(3), 457–476 (1987) Fintushel, R., Stern, R.J.: Instanton homology of Seifert fibred homology three spheres. Proc. London Math. Soc. (3) 61(1), 109–137 (1990) Furuta, M.: Homology cobordism group of homology \(3\)-spheres. Invent. Math. 100(2), 339–355 (1990) Geiges, H.: Examples of symplectic \(4\)-manifolds with disconnected boundary of contact type. Bull. London Math. Soc. 27(3), 278–280 (1995) Ghiggini, P.: Ozsváth–Szabó invariants and fillability of contact structures. Math. Z. 253(1), 159–175 (2006) Ghiggini, P.: On tight contact structures with negative maximal twisting number on small Seifert manifolds. Algebr. Geom. Topol. 8(1), 381–396 (2008) Ghiggini, P., Schönenberger, S.: On the classification of tight contact structures, Topology and geometry of manifolds (Athens, GA, 2001). In: Proceedings of Symposia in Pure Mathematics, vol. 71, pp. 121–151. American Mathematical Society, Providence, RI (2003) Gompf, R.E.: Handlebody construction of stein surfaces. Ann. Math. 148, 619–693 (1998) Gompf, R.E.: Smooth embeddings with Stein surface images. J. Topol. 6(4), 915–944 (2013) Gompf, R.E., Stipsicz, A.I.: \(4\)-Manifolds and Kirby Calculus. Graduate Studies in Mathematics, vol. 20. American Mathematical Society, Providence (1999) Gordon, C.M.A.: Ribbon concordance of knots in the \(3\)-sphere. Math. Ann. 257(2), 157–170 (1981) Gromov, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math. 82(2), 307–347 (1985) Hedden, M.: An Ozsváth–Szabó Floer homology invariant of knots in a contact manifold. Adv. Math. 219(1), 89–117 (2008) Honda, K.: On the classification of tight contact structures I. Geom. Topol. 4, 309–368 (2000) Issa, A., McCoy, D.: Smoothly embedding Seifert fibered spaces in \(S^4\). Preprint arxiv:1810.04770 (2018) Juhász, A., Thurston, D., Zemke, I.: Naturality and mapping class groups in Heegaard Floer homology. To appear in Mem. AMS Karakurt, Ç., Oba, T., Ukida, T.: Planar Lefschetz fibrations and Stein structures with distinct Ozsváth–Szabó invariants on corks. Topol. Appl. 221, 630–637 (2017) Kollár, J.: Is there a topological Bogomolov–Miyaoka–Yau inequality? Pure Appl. Math. Q. 4(2), 203–236 (2008). Special Issue: In honor of Fedor Bogomolov. Part 1 Kroheimer, P., Mrowka, T.: Monopoles and Three-Manifolds. New Mathematical Monographs, vol. 10. Cambridge University Press, Cambridge (2007) Kutluhan, Ç., Taubes, C., Lee, Y.-J.: Heegaard Floer homology and Seiberg-Witten Floer homology. arxiv:1007.1979, arxiv:1008.1595, arxiv:1010.3456, arxiv:1107.2297, arxiv:1204.0115 Lisca, P., Matić, G.: Transverse contact structures on Seifert 3-manifolds. Algebr. Geom. Topol. 4, 1125–1144 (2004) Lisca, P., Stipsicz, A.I.: Ozsváth–Szabó invariants and tight contact three-manifolds, III. J. Sympl. Geom. 5(4), 357–384 (2007) Mark, T.E., Tosun, B.: Obstructing pseudoconvex embeddings and contractible Stein fillings for Brieskorn spheres. Adv. Math. 335, 878–895 (2018) Mazur, B.: A note on some contractible 4-manifolds. Ann. Math. (2) 73, 221–228 (1961) McDuff, D.: The structure of rational and ruled symplectic 4-manifolds. J. Am. Math. Soc. 3(3), 679–712 (1990) McDuff, D.: Symplectic manifolds with contact type boundaries. Invent. Math. 103(3), 651–671 (1991) Milnor, J.: On the \(3\)-dimensional Brieskorn manifolds \(M(p,q,r)\). In: Knots, Groups, and 3-Manifolds (Papers dedicated to the memory of R. H. Fox). Annals of Mathematics Studies, No. 84, pp. 175–225 (1975) Mrowka, T., Rollin, Y.: Legendrian knots and monopoles. Algebr. Geom. Topol. 6, 1–69 (2006) Nemirovski, S., Siegel, K.: Rationally convex domains and singular Lagrangian surfaces in \(\mathbb{C}^2\). Invent. Math. 203(1), 333–358 (2016) Nemirovskiĭ, Y.S.: Finite unions of balls in \(\mathbb{C}^{n}\) are rationally convex. Uspekhi Mat. Nauk. 63(2), 157–158 (2008) Neumann, W.D.: Brieskorn complete intersections and automorphic forms. Invent. Math. 42, 285–293 (1977) Neumann, W.D., Raymond, F.: Seifert manifolds, plumbing, \(\mu \)-invariant and orientation reversing maps. In: Algebraic and Geometric Topology (Proceedings Symposium, University of California, Santa Barbara, CA, 1977), Lecture Notes in Mathematics, vol. 664, , pp. 163–196. Springer, Berlin (1978) Oka, K.: Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans point critique intérieur. Jpn. J. Math. 23, 97–155 (1953) Ozsváth, P., Stipsicz, A.I., Szabó, Z.: Planar open books and Floer homology. Int. Math. Res. Notices 2005, 3385–3401 (2005) Ozsváth, P., Szabó, Z.: Knot Floer homology and the four-ball genus. Geom. Topol. 7, 615–639 (2003) Ozsváth, P., Szabó, Z.: Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary. Adv. Math. 173(2), 179–261 (2003) Ozsváth, P., Szabó, Z.: On the Floer homology of plumbed three-manifolds. Geom. Topol. 7(1), 185–224 (2003) Ozsváth, P., Szabó, Z.: Holomorphic disks and knot invariants. Adv. Math. 1, 58–116 (2004) Ozsváth, P., Szabó, Z.: Holomorphic disks and three-manifold invariants: properties and applications. Ann. Math. (2) 159(3), 1159–1245 (2004) Ozsváth Ozsváth, P., Szabó, Z.: Holomorphic disks and topological invariants for closed three-manifolds. Ann. Math. (2) 159(3), 1027–1158 (2004) Ozsváth, P., Szabó, Z.: Heegaard Floer homologies and contact structures. Duke Math. J. 129(1), 39–61 (2005) Plamenevskaya, O.: Bounds for the Thurston–Bennequin number from Floer homology. Algebr. Geom. Topol. 4, 399–406 (2004) Plamenevskaya, O., Van Horn-Morris, J.: Planar open books, monodromy factorizations and symplectic fillings. Geom. Topol. 14(4), 2077–2101 (2010) Raoux, K.: \(\tau \)-invariants for knots in rational homology spheres. Algebr. Geom. Topol. 20(4), 1601–1640 (2020) Rasmussen, J.: Floer homology and knot complements. Ph.D. thesis, Harvard University (2003) Saveliev, N.: Invariants for homology \(3\)-spheres. Encyclopaedia of Mathematical Sciences, vol. 140, Low-Dimensional Topology, I. Springer-Verlag, Berlin (2002) Schönenberger, S.: Planar open books and symplectic fillings. Ph.D. thesis, University of Pennsylvania (2005) Taubes, C.H.: Embedded contact homology and Seiberg–Witten Floer cohomology I. Geom. Topol. 14(5), 2497–2581 (2010) Tosun, B.: Stein domains in \(\mathbb{C}^2\) with prescribed boundary. Preprint (2020) Viterbo, C.: A proof of Weinstein’s conjecture in \({ R}^{2n}\). Ann. Inst. H. Poincaré Anal. Non Linéaire 4(4), 337–356 (1987) Weinstein, A.: On the hypotheses of Rabinowitz’ periodic orbit theorems. J. Differ. Equ. 33(3), 353–358 (1979) Wendl, C.: Strongly fillable contact manifolds and \(J\)-holomorphic foliations. Duke Math. J. 151(3), 337–384 (2010) Zeeman, E.C.: Twisting spun knots. Trans. Am. Math. Soc. 115, 471–495 (1965)