On choice of the blade back profile curvature in transonic turbine cascades
Tóm tắt
Some design and experimental data on three cascades with the same 12° bending angle for the primary nozzle block of a gas turbine are presented. As is seen from the investigation the most efficient at the transonic velocities of the outward flow are the blades, the back curvature of which in the bevel cut zone decreases to the trailing edge. Also presented is the fact that the blade with the increasing back curvature has noticeably larger losses.
Tài liệu tham khảo
Deich, M.E., Filippov, G.A., and Lazarev, L.Ya., Atlas profilei reshetok osevykh turbomashin (Atlas of Axial-Flow Turbo-Machine Blade Cascade), Moscow: Mashinostroenie, 1965.
Lokai, V.I., Maksutova, M.K., and Strunkin, V.A. Gazovye turbiny dvigatelei letatel’nykh apparatov (Gas Turbines of Aircraft Engines), Moscow: Mashinostroenie, 1979.
Kopelev, S.Z., Proektirovanie protochnoi chasti turbin aviatsionnykh dvigatelei (Design of Aircraft Engine Turbine Flow Passage), Moscow: Mashinostroenie, 1984.
Deich, M.E., Gazodinamika reshetok turbomashin (Gas Dynamics of Turbomachine Cascades), Moscow: Energoatomizdat, 1996.
Ainley, D.G. and Mathieson, G.C.R., An Examination of the Flow and Pressure Losses in Blade Rows of Axial-Flow Turbines. L., 1955. 35 p. (Aeronautical research council: Reports and memoranda; no. 2891).
Gukasova, E.A., Zhukovskii, M.I., Zavadovskii. A.M., et al., Aerodinamicheskoe sovershenstvovanie lopatochnykh apparatov turbin (Aerodynamic Perfection of Turbine Bladings), Moscow-Leningrad: Gosenergoizdat, 1960.
Abiants, V.Kh., Teoriya gazovykh turbin reaktivnykh dvigatelei (Theory of Jet Engine Gas Turbines), Moscow: Mashinostroenie, 1979.
Venediktov, V.D., Granovskii, A.V., Karelin, A.M., Kolesov, A.N., and Mukhtarov, M.Kh., Atlas eksperimentalnykh kharakteristik ploskikh reshetok okhlazhdennykh gasovykh turbin (Atlas of Experimental Characteristics of Two-Dimensional Cascades of Cooled Gas Turbines), Moscow: TsIAM, 1990.
Mamaev, B.I. and Ryabov, E.K., Design of Turbine Cascade by the Dominant Curvature Method, Teploenergetika, 1979, no. 2, pp. 52–55.
Aronov, B.M., Zhukovskii, M.I., and Zhuravlev, V.A., Profilirovanie lopatok aviatsionnykh gazovykh turbin (Profiling of Aircraft Gas Turbine Blades), Moscow: Mashinostroenie, 1975.
Mamaev, B.I., Kirzhner, R.A., and Shuverova, T.I., Influence of Profile Outlet Part Manufacturing Accuracy Upon Losses in the Turbine Cascade, in: Proektirovanie i dovodka aviatsionnykh gazoturbinnykh dvigatelei (Design and Development of Aircraft Gas Turbine Engines), Kuibyshev: KuAI, 1983, pp. 89–96.
Ivanov, M.Ya. and Krupa, V.G., An Implicit Nonfactorized Method for Calculating Turbulent Flows of a Viscous Heat-Conducting Gas in Turbomachine Cascades, Zh. Vychisl. Mat. Mat. Fiz., 1991, vol. 31, no. 5, pp. 746–765 [USSR Computational Mathematics and Mathematical Physics], 1991, vol. 31, no. 5, pp. 83–92.
Isakov, S.N., Mamaev, B.I., and Tugushev, N.U., Calculation of Boundary Layer and Estimation of Profile Losses in Turbine Cascades, in Proektirovanie i dovodka aviatsionnykh gazoturbinnykh dvigatelei (Design and Development of Aircraft Gas-Turbine Engines), Kuibyshev: KuAI, 1985, pp. 88–99.