On-chip silicon light source: from photonics to plasmonics

Frontiers of Optoelectronics - Tập 5 - Trang 3-6 - 2011
Guangzhao Ran1, Hongqiang Li1, Chong Wang1
1School of Physics and State Key Laboratory for Mesoscopic Physics, Peking University, Beijing, China

Tóm tắt

Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III–V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.

Tài liệu tham khảo

Dionne J A, Sweatlock L A, Sheldon M T, Alivisatos A P, Atwater H A. Silicon-based plasmonics for on-chip photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 295–306 Soref R. The past, present, and future of silicon photonics. IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(6): 1678–1687 Intel Labs white paper: The 50G silicon photonics link. 2010, http://newsroom.intel.com/docs/DOC-1131 Walters R J, van Loon R V, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface plasmon polaritons. Nature Materials, 2010, 9(1): 21–25 Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203–9210 Liang D, Bowers J E. Recent progress in lasers on silicon. Nature Photonics, 2010, 4(7): 511–517 Van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, Van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli J M, Lagahe C, Baets R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express, 2007, 15(11): 6744–6749 Hong T, Ran G Z, Chen T, Pan J Q, Chen W X, Wang Y, Cheng Y B, Liang S, Zhao L J, Yin L Q, Zhang J H, Wang W, Qin G G. A selective-area metal bonding InGaAsP-Si laser. IEEE Photonics Technology Letters, 2010, 22(15): 1141–1143 Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3(3): 1782–1802 Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physics Review Letters, 2003, 90 (2): 027402–027405 Zheeludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A. Lasing spaser. Nature Photonics, 2008, 2(6): 351–354 Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632 Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460 (7259): 1110–1112 Neutens P, Lagae L, Borghs G, Van Dorpe P. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Letters, 2010, 10(4): 1429–1432 Koller D M, Honhenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Kernn J R. Organic plasmon-emitting diode. Nature Photonics, 2008, 2(11): 684–687 Ran G Z, Jiang D F, Kan K, Chen H D. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices. Applied Physics Letters, 2010, 97(23): 3304–3306 Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K. Lasing in metal-insulator-metal subwavelength plasmonic waveguides. Optics Express, 2009, 17(13): 11107–11112 Stockman M I. Spasers explained. Nature Photonics, 2008, 2(6): 327–329 Schuller J A, Barnard E S, Cai WS, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204 Barnes WL. Electromagnetic crystals for surface plasmonpolaritons and the extraction of light from emissive devices. Journal of Lightwave Technology, 1999, 17(11): 2170–2182 Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1–65 Winter G, Wedge S, Barnes W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmonpolariton mode? New Journal of Physics, 2006, 8(8): 125