On-chip silicon light source: from photonics to plasmonics
Tóm tắt
Practical silicon photonic interconnects become possible nowadays after the realization of the practical silicon light sources, where the hybrid integrations of III–V semiconductors and silicon by bonding play a fundamental role. Photonic interconnects dissipate substantially less power and offer a significantly greater information bandwidth than those of electronic interconnects; however, one emerging problem is the size mismatch between photonic and electronic components when integrated on a chip. Therefore, surface plasmonic source with deeply sub-wavelength size is under intense investigation as the next generation Si-based light source for on-chip interconnects. In this paper, we shall review some of the latest achievements on this topic.
Tài liệu tham khảo
Dionne J A, Sweatlock L A, Sheldon M T, Alivisatos A P, Atwater H A. Silicon-based plasmonics for on-chip photonics. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16(1): 295–306
Soref R. The past, present, and future of silicon photonics. IEEE Journal on Selected Topics in Quantum Electronics, 2006, 12(6): 1678–1687
Intel Labs white paper: The 50G silicon photonics link. 2010, http://newsroom.intel.com/docs/DOC-1131
Walters R J, van Loon R V, Brunets I, Schmitz J, Polman A. A silicon-based electrical source of surface plasmon polaritons. Nature Materials, 2010, 9(1): 21–25
Fang A W, Park H, Cohen O, Jones R, Paniccia M J, Bowers J E. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Optics Express, 2006, 14(20): 9203–9210
Liang D, Bowers J E. Recent progress in lasers on silicon. Nature Photonics, 2010, 4(7): 511–517
Van Campenhout J, Rojo Romeo P, Regreny P, Seassal C, Van Thourhout D, Verstuyft S, Di Cioccio L, Fedeli J M, Lagahe C, Baets R. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Optics Express, 2007, 15(11): 6744–6749
Hong T, Ran G Z, Chen T, Pan J Q, Chen W X, Wang Y, Cheng Y B, Liang S, Zhao L J, Yin L Q, Zhang J H, Wang W, Qin G G. A selective-area metal bonding InGaAsP-Si laser. IEEE Photonics Technology Letters, 2010, 22(15): 1141–1143
Liang D, Roelkens G, Baets R, Bowers J E. Hybrid integrated platforms for silicon photonics. Materials, 2010, 3(3): 1782–1802
Bergman D J, Stockman M I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Physics Review Letters, 2003, 90 (2): 027402–027405
Zheeludev N I, Prosvirnin S L, Papasimakis N, Fedotov V A. Lasing spaser. Nature Photonics, 2008, 2(6): 351–354
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632
Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T, Wiesner U. Demonstration of a spaser-based nanolaser. Nature, 2009, 460 (7259): 1110–1112
Neutens P, Lagae L, Borghs G, Van Dorpe P. Electrical excitation of confined surface plasmon polaritons in metallic slot waveguides. Nano Letters, 2010, 10(4): 1429–1432
Koller D M, Honhenau A, Ditlbacher H, Galler N, Reil F, Aussenegg F R, Leitner A, List E J W, Kernn J R. Organic plasmon-emitting diode. Nature Photonics, 2008, 2(11): 684–687
Ran G Z, Jiang D F, Kan K, Chen H D. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices. Applied Physics Letters, 2010, 97(23): 3304–3306
Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y C, Sun M H, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z, Smit M K. Lasing in metal-insulator-metal subwavelength plasmonic waveguides. Optics Express, 2009, 17(13): 11107–11112
Stockman M I. Spasers explained. Nature Photonics, 2008, 2(6): 327–329
Schuller J A, Barnard E S, Cai WS, Jun Y C, White J S, Brongersma M L. Plasmonics for extreme light concentration and manipulation. Nature Materials, 2010, 9(3): 193–204
Barnes WL. Electromagnetic crystals for surface plasmonpolaritons and the extraction of light from emissive devices. Journal of Lightwave Technology, 1999, 17(11): 2170–2182
Chance R R, Prock A, Silbey R. Molecular fluorescence and energy transfer near interfaces. Advances in Chemical Physics, 1978, 37: 1–65
Winter G, Wedge S, Barnes W L. Can lasing at visible wavelengths be achieved using the low-loss long-range surface plasmonpolariton mode? New Journal of Physics, 2006, 8(8): 125