On bounds for codes over Frobenius rings under homogeneous weights
Tài liệu tham khảo
Aaltonen, 1990, A new upper bound on non-binary block codes, Discrete Math., 83, 139, 10.1016/0012-365X(90)90002-Y
Astola, 1982, An Elias-type bound for Lee codes over large alphabets and its application to perfect codes, IEEE Trans. Inform. Theory, 28, 111, 10.1109/TIT.1982.1056443
Astola, 1984, On the asymptotic behaviour of Lee codes, Discrete Appl. Math., 8, 13, 10.1016/0166-218X(84)90074-X
Constantinescu, 1997, A metric for codes over residue class rings of integers, Problemy Peredachi Informatsii, 33, 22
S. Dougherty, URL: 〈http://academic.scranton.edu/faculty/doughertys1/72.htm〉, 2003.
Duursma, 2001, A Z8-linear lift of the binary Golay code and a nonlinear binary (96,237,24)-code, IEEE Trans. Inform. Theory, 47, 1596, 10.1109/18.923742
I.M. Duursma, M. Greferath, S.N. Litsyn, S.E. Schmidt, A Z9-linear lift of the ternary [24,12,9]-code inducing a nonlinear ternary (72,325,24)-code, Proceedings of Optimal Codes (OC 2001), Slantchev Briag, Bulgaria, 2001, pp. 59–64.
Greferath, 2000, Finite-ring combinatorics and MacWilliams equivalence theorem, J. Combin. Theory (A), 92, 17, 10.1006/jcta.1999.3033
Hammons, 1994, The Z4-linearity of Kerdock, Preparata, Goethals and related codes, IEEE Trans. Inform. Theory, 40, 301, 10.1109/18.312154
Honold, 2001, A characterization of finite Frobenius rings, Arch. Math. (Basel), 76, 406, 10.1007/PL00000451
Laihonen, 1998, On upper bounds for minimum distance and covering radius of non-binary codes, Des. Codes Cryptogr., 14, 71, 10.1023/A:1008260505585
Levenshtein, 1995, Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces, IEEE Trans. Inform. Theory, 41, 1303, 10.1109/18.412678
Loeliger, 1994, An upper bound on the volume of discrete spheres, IEEE Trans. Inform. Theory, 40, 2071, 10.1109/18.340483
MacWilliams, 1977
Roman, 1992
Wood, 1999, Duality for modules over finite rings and applications to coding theory, Amer. J. Math., 121, 555, 10.1353/ajm.1999.0024