On binary palindromes of the form
Tài liệu tham khảo
Ashbacher, 1990, More on palindromic squares, J. Recreational Math., 22, 133
Banks, 2004, Almost all palindromes are composite, Math. Res. Lett., 11, 853, 10.4310/MRL.2004.v11.n6.a10
Banks, 2005, Prime divisors of palindromes, Period. Math. Hungar., 51, 1, 10.1007/s10998-005-0016-6
Keith, 1990, Classification and enumeration of palindromic squares, J. Recreational Math., 22, 124
Laurent, 1995, Formes linéaires en deux logarithmes et déterminants d'interpolation, J. Number Theory, 55, 285, 10.1006/jnth.1995.1141
Luca, 2003, Palindromes in Lucas sequences, Monatsh. Math., 138, 209, 10.1007/s00605-002-0490-3