On backward Euler approximations for systems of conservation laws

Maria Teresa Chiri1, Minyan Zhang2
1Department of Mathematics and Statistics, Queen's University, Kingston, ON, K7L3N6, Canada
2Department of Mathematics, Penn State University, University Park, PA 16802, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Benzoni-Gavage, S.: Semi-discrete shock profiles for hyperbolic systems of conservation laws. Physica D 115, 109–123 (1998)

Benzoni-Gavage, S., Huot, P.: Existence of semi-discrete shocks. Discrete Contin. Dyn. Syst. 8, 163–190 (2002)

Bianchini, S.: BV solutions of the semidiscrete upwind scheme. Arch. Rational Mech. Anal. 167, 1–81 (2003)

Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161, 223–342 (2005)

Bressan, A.: The unique limit of the Glimm scheme. Arch. Rational Mech. Anal. 130, 205–230 (1995)

Bressan, A.: Hyperbolic Systems of Conservation Laws. The One Dimensional Cauchy Problem, pp. 223–342. Oxford University Press, Oxford (2005)

Bressan, A., Chiri, M.T., Shen, W.: A posteriori error estimates for numerical solutions to hyperbolic conservation laws. Arch. Rational Mech. Anal. 241, 357–402 (2021)

Bressan, A., Liu, T.P., Yang, T.: $$L^1$$ stability estimates for $$n\times n$$ conservation laws. Arch. Rational Mech. Anal. 149, 1–22 (1999)

Bressan, A., Marson, A.: Error bounds for a deterministic version of the Glimm scheme. Arch. Rational Mech. Anal. 142, 155–176 (1998)

Crandall, M.G.: The semigroup approach to first order quasilinear equations in several space variables. Israel J. Math. 12, 108–132 (1972)

Crandall, M.G., Liggett, T.M.: Generation of semigroups of nonlinear transformations on general Banach spaces. Am. J. Math. 93, 265–298 (1971)

Dafermos, C.: Hyperbolic Conservation Laws in Continuum Physics, 4th edn. Springer, Berlin (2016)

Guerra, G., Shen, W.: Vanishing viscosity and backward Euler approximations for conservation laws with discontinuous flux. SIAM J. Math. Anal. 51, 3112–3144 (2019)

Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, New York (1993)

Hoff, D.: Invariant regions for systems of conservation laws. Trans. Am. Math. Soc. 289, 591–610 (1985)

Holden, H., Risebro, N.: Front Tracking for Hyperbolic Conservation Laws. Springer, Berlin (2002)

Lax, P.: Hyperbolic systems of conservation laws II. Commun. Pure Appl. Math. 10, 537–566 (1957)

Martin, R.H.: Nonlinear Operators and Differential Equations in Banach Spaces. Wiley-Interscience, New York (1976)

Ridder, J., Shen, W.: Traveling waves for nonlocal models of traffic flow. Discrete Contin. Dyn. Syst. 39, 4001–4040 (2019)

Shen, W.: Traveling waves for conservation laws with nonlocal flux for traffic flow on rough roads. Netw. Heterog. Media 14, 709–732 (2019)

Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Springer, New York (1983)