On approximation of BSDE and multi-step MLE-processes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bismut, JM: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973).
El Karoui, N, Peng, S, Quenez, M: Backward stochastic differential equations in finance. Math. Fin. 7, 1–71 (1997).
Fisher, RA: Theory of statistical estimation. Proc. Cambridge Phylosophical Society. 22, 700–725 (1925).
Gasparyan, S, Kutoyants, YA: On approximation of the BSDE with unknown volatility in forward equation. Armenian J. Math. 7(1), 59–79 (2015).
Ibragimov, IA, Has’minskii, RZ: Statistical Estimation - Asymptotic Theory. Springer, New York (1981).
Jeganathan, P: Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhya: The Indian Journal of Statistics. 45(Series A, Pt.1), 66–87 (1983).
Kamatani, K, Uchida, M: Hybrid multi-step estimators for stochastic differential equations based on sampled data. Statist. Inference Stoch. Processes. 18(2), 177–204 (2015).
Kutoyants, YA: Identification of Dynamical Systems with Small Noise. Kluwer Academic Publisher, Dordrecht (1994).
Kutoyants, YA: On approximation of the backward stochastic differential equation. Small noise, large samples and high frequency cases. Proceed. Steklov Inst. Mathematics. 287, 133–154 (2014).
Kutoyants, YA, Motrunich, A: On milti-step MLE-process for Markov sequences. Metrika. 79(6), 705–724 (2016).
Kutoyants, YA, Zhou, L: On approximation of the backward stochastic differential equation. (arXiv:1305.3728). J. Stat. Plann. Infer. 150, 111–123 (2014).
Le Cam, L: On the asymptotic theory of estimation and testing hypotheses. In: Proc. 3rd Berkeley Symposium, vol. 1, pp. 129–156 (1956).
Lehmann, EL, Romano, JP: Testing Statistical Hypotheses. 3rd ed. Springer, NY (2005).
Liptser, R, Shiryaev, AN: Statistics of Random Processes. v.’s 1 and 2, 2-nd ed. Springer, NY (2001).
Pardoux, E, Peng, S: Adapted solution of a backward stochastic differential equation. System Control Letter. 14, 55–61 (1990).
Pardoux, E, Peng, S: Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and their Applications. Springer, Berlin (1992). (Lect. Notes Control Inf. Sci. 176).
Robinson, PM: The stochastic difference between econometric statistics. Econometrica. 56(3), 531–548 (1988).
Skorohod, AV, Khasminskii, RZ: On parameter estimation by indirect observations. Prob. Inform. Transm. 32, 58–68 (1996).