On approximation of BSDE and multi-step MLE-processes

Yury A. Kutoyants1
1Laboratoire Manceau des Mathématiques, Université du Maine Le Mans, France and National Research University “MPEI”, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bismut, JM: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44, 384–404 (1973).

El Karoui, N, Peng, S, Quenez, M: Backward stochastic differential equations in finance. Math. Fin. 7, 1–71 (1997).

Fisher, RA: Theory of statistical estimation. Proc. Cambridge Phylosophical Society. 22, 700–725 (1925).

Freidlin, MI, Wentzell, AD: Random Perturbations of Dynamical Systems. 2nd Ed. Springer, NY (1998).

Gasparyan, S, Kutoyants, YA: On approximation of the BSDE with unknown volatility in forward equation. Armenian J. Math. 7(1), 59–79 (2015).

Ibragimov, IA, Has’minskii, RZ: Statistical Estimation - Asymptotic Theory. Springer, New York (1981).

Jeganathan, P: Some asymptotic properties of risk functions when the limit of the experiment is mixed normal. Sankhya: The Indian Journal of Statistics. 45(Series A, Pt.1), 66–87 (1983).

Kamatani, K, Uchida, M: Hybrid multi-step estimators for stochastic differential equations based on sampled data. Statist. Inference Stoch. Processes. 18(2), 177–204 (2015).

Kutoyants, YA: Identification of Dynamical Systems with Small Noise. Kluwer Academic Publisher, Dordrecht (1994).

Kutoyants, YA: On approximation of the backward stochastic differential equation. Small noise, large samples and high frequency cases. Proceed. Steklov Inst. Mathematics. 287, 133–154 (2014).

Kutoyants, YA: On Multi-Step MLE-Process for Ergodic Diffusion. arXiv:1504.01869 [math.ST] (2015).

Kutoyants, YA, Motrunich, A: On milti-step MLE-process for Markov sequences. Metrika. 79(6), 705–724 (2016).

Kutoyants, YA, Zhou, L: On approximation of the backward stochastic differential equation. (arXiv:1305.3728). J. Stat. Plann. Infer. 150, 111–123 (2014).

Le Cam, L: On the asymptotic theory of estimation and testing hypotheses. In: Proc. 3rd Berkeley Symposium, vol. 1, pp. 129–156 (1956).

Lehmann, EL, Romano, JP: Testing Statistical Hypotheses. 3rd ed. Springer, NY (2005).

Liptser, R, Shiryaev, AN: Statistics of Random Processes. v.’s 1 and 2, 2-nd ed. Springer, NY (2001).

Pardoux, E, Peng, S: Adapted solution of a backward stochastic differential equation. System Control Letter. 14, 55–61 (1990).

Pardoux, E, Peng, S: Backward stochastic differential equations and quasilinear parabolic partial differential equations. Stochastic Partial Differential Equations and their Applications. Springer, Berlin (1992). (Lect. Notes Control Inf. Sci. 176).

Robinson, PM: The stochastic difference between econometric statistics. Econometrica. 56(3), 531–548 (1988).

Skorohod, AV, Khasminskii, RZ: On parameter estimation by indirect observations. Prob. Inform. Transm. 32, 58–68 (1996).

Uchida, M, Yoshida, N: Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations. Statist. Inference Stoch. Processes. 17(2), 181–219 (2014).