On approximating the modified Bessel function of the second kind
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1970)
Gaunt, RE: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420(1), 373-386 (2014)
Segura, J: Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374(2), 516-528 (2011)
Bordelon, DJ, Ross, DK: Problem 72-75, ‘Inequalities for special functions’. SIAM Rev. 15, 665-670 (1973)
Paris, RB: An inequality for the Bessel function J ν ( ν x ) $J_{\nu}(\nu x)$ . SIAM J. Math. Anal. 15(1), 203-205 (1984)
Baricz, Á: Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. (2) 53(3), 575-599 (2010)
Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Monotonicity rules in calculus. Am. Math. Mon. 113(9), 805-816 (2006)
Qi, F: Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, Article ID 493085 (2010)
Watson, GN: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)