On approximating the modified Bessel function of the second kind

Springer Science and Business Media LLC - Tập 2017 Số 1 - 2017
Zhen-Hang Yang1, Yu‐Ming Chu1
1School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1970)

Luke, YL: Inequalities for generalized hypergeometric functions. J. Approx. Theory 5, 41-65 (1972)

Gaunt, RE: Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420(1), 373-386 (2014)

Segura, J: Bounds for ratios of modified Bessel functions and associated Turán-type inequalities. J. Math. Anal. Appl. 374(2), 516-528 (2011)

Bordelon, DJ, Ross, DK: Problem 72-75, ‘Inequalities for special functions’. SIAM Rev. 15, 665-670 (1973)

Paris, RB: An inequality for the Bessel function J ν ( ν x ) $J_{\nu}(\nu x)$ . SIAM J. Math. Anal. 15(1), 203-205 (1984)

Laforgia, A: Bounds for modified Bessel functions. J. Comput. Appl. Math. 34(3), 263-267 (1991)

Baricz, Á: Bounds for modified Bessel functions of the first and second kinds. Proc. Edinb. Math. Soc. (2) 53(3), 575-599 (2010)

Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Monotonicity rules in calculus. Am. Math. Mon. 113(9), 805-816 (2006)

Qi, F: Bounds for the ratio of two gamma functions. J. Inequal. Appl. 2010, Article ID 493085 (2010)

Watson, GN: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)