On an extension of a van Hamme supercongruence
Tóm tắt
We prove a conjectural extension of a van Hamme supercongruence due to Sun. The proof is inspired by recent techniques due to Osburn and Zudilin, in particular the use of a certain WZ pair and congruences for quotients of Pochhammer symbols.
Tài liệu tham khảo
Berndt, B.: Ramanujan’s Notebooks. Part IV. Springer, New York (1994)
Guillera, J.: Generators of some Ramanujan formulas. Ramanujan J. 11, 41–48 (2006)
Lehmer, E.: On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson. Ann. Math. 39, 350–360 (1938)
Long, L.: Hypergeometric evaluation identities and supercongruences. Pac. J. Math. 249, 405–418 (2011)
Morley, F.: Note on the congruence \(2^{4n}\equiv (-1)^n(2n)!/(n!)^2\), where \(2n+1\) is a prime. Ann. Math. 9, 168–170 (1895)
Mortenson, E.: A p-adic supercongruence conjecture of van Hamme. Proc. Am. Math. Soc. 136, 4321–4328 (2008)
Osburn, R., Schneider, C.: Gaussian hypergeometric series and supercongruences. Math. Comput. 78, 275–292 (2009)
Osburn, R., Zudilin, W.: On the (K.2) supercongruence of Van Hamme. J. Math. Anal. Appl. 433(1), 706–711 (2016)
Ramanujan, S.: Modular equations and approximations to \(\pi \). Q. J. Math. (Oxf.) (2) 45, 350–372 (1914)
Sun, Z.W.: Super congruences and Euler numbers. Sci. China Math. 54, 2509–2535 (2011)
Sun, Z.W.: On congruences related to central binomial coefficients. J. Number Theory 131, 2219–2238 (2011)
Sun, Z.W.: A refinement of a congruence result by van Hamme and Mortenson. Ill. J. Math. 56, 967–979 (2012)
Swisher, H.: On the supercongruence conjecture of van Hamme. Res. Math. Sci. 2, 18 (2015)
Tauraso, R.: Congruences involving alternating multiple harmonic sum. Electron. J. Comb. 17, #R16 (2010)
van Hamme, L.: Some conjectures concerning partial sums of generalized hypergeometric series. In: \(p\)Adic Functional Analysis (Nijmegen, 1996). Lecture Notes in Pure and Applied Mathematics, vol. 192, pp. 223–236. Dekker, New York (1997)
Wolstenholme, J.: On certain properties of prime numbers. Q. J. Appl. Math. 5, 35–39 (1862)