On an eigenvalue problem related to the critical exponent

Springer Science and Business Media LLC - Tập 250 Số 1 - Trang 225-256 - 2005
Massimo Grossi1, Filomena Pacella1
1Dipartimento di Matematica, Università di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36, 235?249 (1957)

Bahri, A., Li, Y., Rey, O.: On a variational problem with lack of compactness: the topological effect of the critical points at infinity. Calc. of Variat. 3, 67?93 (1995)

Bianchi, G., Egnell, H.: A note on the Sobolev inequality. J. Funct. Anal. 100, 18?24 (1991)

Gidas, B., Ni, W.M., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209?243 (1979)

Grossi, M.: A uniqueness result for a semilinear elliptic equation in symmetric domains. Adv. Diff. Eqns. 5, 193?212 (2000)

Grossi, M., Molle, R.: On the shape of the solutions for some semilinear elliptic problem. Comm. Cont. Math. 5, 85?100 (2003)

Han, Z.C.: Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponents. Ann. Inst. H. Poincaré, Analyse Nonlineaire 8, 159?174 (1991)

Melas, A.: On the nodal line of the second eigenfunction of the Laplacian in R2. J. Diff. Geom. 35, 255?263 (1992)

Rey, O.: Proof of two conjectures of H. Brézis and L. A. Peletier. Manuscripta Math. 65, 19?37 (1989)

Widman, K.O.: Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations. Math. Scand. 21, 17?37 (1967)