On adsorption of aluminium and methyl groups on silica for TMA/H2O process in atomic layer deposition of aluminium oxide nano layers
Tóm tắt
A detailed chemisorption mechanism is proposed for the atomic layer deposition (ALD) of aluminium oxide nano layers using trimethyl aluminum (TMA) and water as precursors. Six possible chemisorption mechanisms, complete ligand exchange, partial ligand exchange, simple dissociation, complete dissociation via ligand exchange, complete dissociation and association, are proposed and related parameters like ligand to metal ratio (L/M), concentrations of metal atoms and methyl groups adsorbed are calculated and compared against reported values. The maximum number of methyl groups that can get attached on the surface is calculated in a different way which yields a more realistic value of 6·25 per nm2 substrate area. The dependence of the number of metal atoms adsorbed on OH concentration is explained clearly. It is proposed that a combination of complete ligand exchange and complete dissociation is the most probable chemisorption mechanism taking place at various OH concentrations.
Tài liệu tham khảo
Alkan Mahir and Dogan Mehmet 2006 Encyclopedia of surface and colloid science (ed.) P Somasundaran (FL, USA: CRC Press) pp 5610–5612
Baccarani G, Wordeman M R and Dennard R H 1984 IEEE Trans. Electron Dev. 31 452
Crowell John E 2003 J. Vac. Sci. Technol. A21 88
de Rouffignac Philip and Gordon Roy G 2006 Chem. Vap. Dep. 12 152
Dueñas S et al 2006 J. Appl. Phys. 99 054902
Gao K Y, Speck F, Emtsev K, Seyller Th and Ley L 2007 J. Appl. Phys. 102 094503
Goodman C H L and Pessa M V 1986 J. Appl. Phys. 60 R65
Green M L et al 2002 J. Appl. Phys. 92 7168
Jones Anthony C et al 2004 J. Mater. Chem. 14 3101
Kahgn D and Attala M M 1960 IRE solid state research conference (Pittsburgh, PA: Carnegie Institute of Technology)
Katemreddy Rajesh, Inman Ronald, Jursich Gregory, Soulet Axel and Takoudis Christos 2006 J. Electrochem. Soc. 153 C701
Lin H C, Ye P D and Wilk G D 2005 Appl. Phys. Lett. 87 182904
McCormik Jarod A, Rice Katherine P, Paul Dennis F, Weimer Alan and George Steven M 2007 Chem. Vap. Dep. 13 491
Nishizawa J and Kurabayashi T 1988 J. Cryst. Growth 93 98
Okorn-Schmidt H F 1999 IBM J. Res. & Dev. 43 351
Ott A W, McCarley K C, Klaus J W, Way J D and George S M 1996 Appl. Surf. Sci. 107 128
Pauling Linus 1988 General chemistry (Dover Publications) Ch. 6, pp 19–197
Pessa M V, Huttunen P and Herman M A 1983 J. Appl. Phys. 54 6047
Puurunen R L et al 2000 J. Phys. Chem. B104 6599
Puurunen R L 2003 Chem. Vap. Dep. 9 327
Puurunen R L 2005a Appl. Surf. Sci. 245 6
Puurunen R L 2005b J. Appl. Phys. 97 121301
Siimon H and Aarik J 1997 J. Phys. D30 1725
Sparacin Daniel K, Spector Steven J and Kimerling L C 2005 J. Lightwave Technol. 23 2455
Stumm W 1992 Chemistry of solid water interface (New York: John Wiley & Sons Inc)
Uusitalo A M, Pakkanen T T, Kroger-Laukkanen, Ninitso L, Hakala K, Paavola S and Lofgren B 2000 J. Mol. Catal. A: Chem. 160 343
Wank Jeffrey R, George Steven M and Weimer Alan W 2004 Powder Technol. 142 59
Wilk G D, Wallace R M and Anthony J M 2001 J. Appl. Phys. 89 5243
Xu Y and Musgrave C B 2004 Chem. Mater. 16 646