On a variational principle for the fractal Wu–Zhang system arising in shallow water
Tóm tắt
The flow of the shallow water of the harbor can be described by the classic Wu–Zhang system. However when the the boundary (such as the coastline) is non-smooth, it becomes invalid. So we modify the classic Wu–Zhang system into its fractal form that can work under the non-smooth boundary by using He’s fractal derivatives. With the help of the semi-inverse method, we establish its fractal variational principle, which can not only provide the conservation laws in an energy form in the fractal space but also reveal the possible solution structures of the equation. The established variational principle in this work is expected to be helpful for finding conserved quantities for the equations, and to bring a light to the study of the fractal theoretical basis in geosciences.
Tài liệu tham khảo
Ain, Q.T., He, J.H.: On two-scale dimension and its applications. Therm. Sci. 23(3), 1707–1712 (2019)
Attia, R.A.M., Baleanu, D., Lu, D., et al.: Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete Contin. Dyn. Syst. S (2021). https://doi.org/10.3934/dcdss.2021018
Eslami, M., Rezazadeh, H.: The first integral method for Wu–Zhang system with conformable time-fractional derivative. Calcolo 53(3), 475–485 (2016)
Fang, J.J., Dai, C.Q.: Optical solitons of a time-fractional higher-order nonlinear Schrödinger equation. Optik 209, 164574 (2020)
He, J.-H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics. Int. J. Turbo Jet Engines 14(1), 23–28 (1997)
He, J.-H.: A family of variational principles for compressible rotational blade-to-blade flow using semi-inverse method. Int. J. Turbo Jet Engines 15(2), 95–100 (1998)
He, J.H.: A tutorial review on fractal spacetime and fractional calculus. Int. J. Theor. Phys. 53(11), 3698–3718 (2014)
He, J.H.: Fractal calculus and its geometrical explanation. Results Phys. 10, 272–276 (2018)
He, J.H.: Lagrange crisis and generalized variational principle for 3D unsteady flow. Int. J. Numer. Methods Heat Fluid Flow 30(3), 1189–1196 (2019)
He, J.H., Ain, Q.T.: New promises and future challenges of fractal calculus: from two-scale Thermodynamics to fractal variational principle. Therm. Sci. (2020). https://doi.org/10.2298/TSCI200127065H
He, J.H., Ji, F.Y.: Two-scale mathematics and fractional calculus for thermodynamics. Therm. Sci. 23(4), 2131–2134 (2019)
He, J.H., Sun, C.: A variational principle for a thin film equation. J. Math. Chem. 57(9), 2075–2081 (2019)
He, J.H., Qie, N., He, C.H., Saeed, T.: On a strong minimum condition of a fractal variational principle. Appl. Math. Lett. Article number: 107199 (2021a). https://doi.org/10.1016/j.aml.2021.107199
He, J.-H., Qie, N., He, C.-H.: Solitary waves travelling along an unsmooth boundary. Results Phys. Article Number: 104104 (2021b)
Khater, M.M.A., Lu, D., Attia, R.A.M.: Dispersive long wave of nonlinear fractional Wu–Zhang system via a modified auxiliary equation method. AIP Adv. 9(2), 25003 (2019)
Khater, M.M.A., Ahmed, A.E.S., El-Shorbagy, M.A.: Abundant stable computational solutions of Atangana-Baleanu fractional nonlinear HIV-1 infection of CD4+ T-cells of immunodeficiency syndrome. Results Phys. 22, 103890 (2021a)
Khater, M.M.A., Mohamed, M.S., Elagan, S.K.: Diverse accurate computational solutions of the nonlinear Klein–Fock–Gordon equation. Results Physics 23, 104003 (2021b)
Liu, J.-G., Yang, X.-J., Feng, Y.-Y., et al.: On group analysis of the time fractional extended (2 + 1)-dimensional Zakharov-Kuznetsov equation in quantum magneto-plasmas. Math. Comput. Simul. 178, 407–421 (2020)
Lu, P.H., Wang, B.H., Dai, C.Q.: Fractional traveling wave solutions of the (2 + 1)-dimensional fractional complex Ginzburg-Landau equation via two methods. Math. Methods Appl. Sci. 43(15), 8518–8526 (2020)
Sun, W., Liu, Q.: Hadamard type local fractional integral inequalities for generalized harmonically convex functions and applications. Math. Methods Appl. Sci. 43(9), 5776–5787 (2020)
Wang, K.L.: A novel perspective for the fractal Schrödinger equation. Fractals (2020a). https://doi.org/10.1142/S0218348X21500936
Wang, K.J.: A variational principle for the (3 + 1)-dimensional extended quantum Zakharov-Kuznetsov equation in plasma physics. EPL (Europhys. Lett.) 132, 44002 (2020b)
Wang, K.J.: A new fractional nonlinear singular heat conduction model for the human head considering the effect of febrifuge. Eur. Phys. J. Plus 135, 871 (2020c)
Wang, K.J.: On a High-pass filter described by local fractional derivative. Fractals 28(3), 2050031 (2020d)
Wang, K.L.: A new fractal transform frequency formulation for fractal nonlinear oscillators. Fractals (2020e). https://doi.org/10.1142/S0218348X21500626
Wang, K.L.: He’s frequency formulation for fractal nonlinear oscillator arising in a microgravity space. Numer. Methods Partial Differ. Equ. (2020f). https://doi.org/10.1002/num.22584
Wang, K.L.: A novel approach for fractal Burgers-BBM equation and its variational principle. Fractals (2021a). https://doi.org/10.1142/S0218348X2150059
Wang, K.J.: Variational principle and approximate solution for the generalized Burgers-Huxley equation with fractal derivative. Fractals (2021b). https://doi.org/10.1142/S0218348X21500444
Wang, K.J., Wang, K.L.: Variational principles for fractal Whitham–Broer–Kaup Equations in Shallow Water. Fractals (2020). https://doi.org/10.1142/S0218348X21500286
Wang, K.J., Wang, G.D.: He’s variational method for the time-space fractional nonlinear Drinfeld–Sokolov–Wilson system. Math. Methods Appl. Sci. (2021a). https://doi.org/10.1002/mma.7200
Wang, K.J., Wang, G.D.: Solitary and periodic wave solutions of the generalized fourth order boussinesq equation via He’s variational methods. Math. Methods Appl. Sci. (2021b). https://doi.org/10.1002/MMA.7135
Wang, K.J., Wang, G.D.: Periodic solution of the (2 + 1)-dimensional nonlinear electrical transmission line equation via variational method. Results Phys. 20, 103666 (2021c)
Wang, K.J., Wang, G.D.: Variational principle and approximate solution for the fractal generalizedBenjamin–Bona–Mahony–Burgers equation in fluid mechanics. Fractals (2021d). https://doi.org/10.1142/S0218348X21500754
Wang, K.J., Wang, G.D.: Variational principle, solitary and periodic wave solutions of the fractal modified equal width equation in plasma physics. Fractals (2021e). https://doi.org/10.1142/S0218348X21501152
Wang, B.H., Wang, Y.Y., Dai, C.Q., et al.: Dynamical characteristic of analytical fractional solitons for the space-time fractional Fokas-Lenells equation. Alex. Eng. J. 59(6), 4699–4707 (2020a)
Wang, K.J., et al.: A a-order R-L high-pass filter modeled by local fractional derivative. Alexandria Eng. J. 59(5), 3244–3248 (2020b)
Wang, K.J., Sun, H.C., Cui, Q.C.: The fractional Sallen-Key filter described by local fractional derivative. IEEE Access 8, 166377–166383 (2020c)
Wang, K.J., et al.: The transient analysis for zero-input response of fractal RC circuit based on local fractional derivative. Alexandria Eng. J. 59(6), 4669–4675 (2020d)
Wang, K.J., Wang, G.D., Zhu, H.W.: A new perspective on the study of the fractal coupled Boussinesq-Burger equation in shallow water. Fractals (2021). https://doi.org/10.1142/S0218348X2150122X