On a simple, data-aided analytic description of the morphology of equatorial F-region zonal plasma drifts

Samuel A. Shidler1, Fabiano S. Rodrigues1
1W. B. Hanson Center for Space Sciences, The University of Texas at Dallas, Richardson, TX, USA

Tóm tắt

We present results of an effort to evaluate the ability of an analytic model to describe the behavior of the equatorial zonal plasma drifts given inputs provided by readily available climatological models of thermospheric and ionospheric parameters. In a data-model fusion approach, we used vertical drift measurements to drive the model and zonal drift measurements to evaluate its output. Drift measurements were made by the Jicamarca incoherent scatter radar, and model results were evaluated for different seasons and two distinct solar flux conditions. We focused, in particular, on model results for different versions of the Horizontal Wind Model (HWM 97, 07, and 14). We found that, despite its simplicity, the analytic model can reproduce fairly well most of the features in the observed zonal plasma drifts, including the vertical shear associated with the evening plasma vortex. During daytime hours the model predicts similar results for the zonal drifts independently of the HWM used to drive the model. More importantly, the modeled daytime drifts match exceptionally well the behavior and magnitude of the observed drifts for all seasons and solar flux conditions considered. The nighttime results drive the overall performance of the analytic model, and we found that a single HWM cannot provide the best results for all seasons and solar flux conditions. We also examined the main sources of zonal drift variability. Most of the morphology is controlled by the zonal wind dynamo term of the analytic model, but with non-negligible contribution from the vertical drift term. Finally, we examined the contribution from the E- and F-region to the zonal wind dynamo. The morphology of the zonal drifts in the region of observation (240–560 km altitude) is controlled mostly by the F-region winds, but with significant contributions from the daytime E-region particularly during December solstice and low solar flux conditions.

Từ khóa


Tài liệu tham khảo

Abdu, MA, de Medeiros RT, Bittencourt JA, Batista IS (1983) Vertical ionization drift velocities and range type spread F in the evening equatorial ionosphere. J Geophys Res 88(A1):399–402. https://doi.org/10.1029/JA088iA01p00399. Aveiro, HC, Hysell DL (2010) Three-dimensional numerical simulation of equatorial F region plasma irregularities with bottomside shear flow. J Geophys Res 115(A11321). https://doi.org/10.1029/2010JA015602. Bilitza, D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather 15:418–429. https://doi.org/10.1002/2016SW001593. Biondi, MA, Meriwether JW, Fejer BG, Woodman R (1988) Measurements of the dynamics and coupling of the equatorial thermosphere and the F-region ionosphere in Peru. J Atmo and Solar-Terr Phys 50:937–942. https://doi.org/10.1016/0021-9169(88)90081-5. Chapagain, NP, Daniel FJ, Meriwether JW, Chau JL, Makela JJ (2013) Comparison of zonal neutral winds with equatorial plasma and plasma drift velocities. J Geophys Res 118:1802–1812. https://doi.org/10.1002/jgra.50238. Chau, JL, Woodman RF (2004) Daytime vertical and zonal velocities from 150-km echoes: Their relevance to F-region dynamics. Geophys Res Lett 31:17801. https://doi.org/10.1029/2004GL020800. Coley, WR, Heelis RA, Spencer NW (1994) Comparison of low-latitude ion and neutral zonal drifts using DE 2 data. J Geophys Res 99(A1):341–348. https://doi.org/10.1029/93JA02205. David, M, Sojka JJ, Schunk RW (2016) How uncertainty in the neutral wind limits the accuracy of ionospheric modeling and forecasting. J Geophys Res 121:519–528. https://doi.org/10.1002/2015JA021544. Drob, DP, Emmert JT, Crowley G, Pincone JM, Shepherd GG, Skinner W, Hays P, J NR, Larsen M, She CY, Meriwether JW, Hernandez G, Jarvis MJ, Sipler DP, Tepley CA, O’Briend MS, Bowman JR, Wu Q, Murayama Y, Kawamura S, Reid IM, Vincent RA (2008) An empirical model of the Earth’s horizontal wind fields: HWM07. J Geophys Res 133(A12304). https://doi.org/10.1029/2008JA013668. Drob, DP, Emmert JT, Meriwether JW, Makela JJ, Doornbos E, Conde M, Hernandez G, Noto J, Zawdle KA, McDonald SE, Huba JD, Klenzing JH (2015) An update to the Horizontal Wind Model (HWM): The quiet time thermosphere: Empirical model of thermospheric winds. Earth Space Sci 2(7):301–319. https://doi.org/10.1002/2014EA000089. Eccles, JV (1998) A simple model of low-latitude electric fields. J Geophys Res 103(A11):26699–26708. https://doi.org/10.1029/98JA02657. Eccles, JV (2004) The effect of gravity and pressure in the electrodynamics of the low-latitude ionosphere. J Geophys Res 109(A05304). https://doi.org/10.1029/2003JA010023. Eccles, JV, Maynard N, Wilson G (1999) Study of the evening plasma drift vortex in the low-latitude ionosphere using San Marco electric field measurements. J Geophys Res 104(A12):28133–28143. https://doi.org/10.1029/1999JA900373. Eccles, JV, St. Maurice JP, Schunk RW (2015) Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J Geophys Res 120(6):4950–4970. https://doi.org/10.1002/2014/JA020664. Fejer, BG (1993) F region plasma drifts over Arecibo: Solar cycle, seasonal, and magnetic activity effects. J Geophys Res 98(A8):13635–13652. https://doi.org/10.1029/93JA00953. Fejer, BG, de Paula ER, Gonzalez SA, Woodman RF (1991) Average vertical and zonal F region plasma drifts over Jicamarca. J Geophys Res 96(A8):13901–13906. https://doi.org/10.1029/91JA01171. Fejer, BG, Hui D, Chau JL, Kudeki E (2014) Altitudinal dependence of evening equatorial F region vertical plasma drifts. J Geophys Res 119(7):5877–5890. https://doi.org/10.1002/2014JA019949. Fejer, BG, Kelley MC (1980) Ionospheric irregularities. Rev Geophys 18(2):401–454. https://doi.org/10.1029/RG018i002p00401. Fejer, BG, Kudeki E, Farley DT (1985) Equatorial F region zonal plasma drifts. J Geophys Res 90(A12):12249–12255. https://doi.org/10.1029/JA090iA12p12249. Fejer, BG, Santos AS, Costa Pereira AE (2005) Climatology of F region zonal plasma drifts over Jicamarca. J Geophys Res 110(A12310). https://doi.org/10.1029/2005JA011324. Fejer, BG, Scherliess L (1997) Empirical models of storm time equatorial zonal electric fields. J Geophys Res 102(A11):24047–24056. https://doi.org/10.1029/97JA02164. Fejer, BG, Scherliess L, de Paula ER (1999) Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J Geophys Res 104(A9):19859–19869. https://doi.org/10.1029/1999JA900271. Haerendel, G, Eccles JV, Çakir S (1992) Theory for modeling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. J Geophys Res 97(A2):1209–1223. https://doi.org/10.1029/91JA02226. Hays, PG, Abreu VJ, Dobbs ME, Gell DA, Grassl HJ, Skinner WR (1993) The high-resolution doppler imager on the Upper Atmosphere Research Satellite. J Geophys Res 98(D6):10713–10723. https://doi.org/10.1029/93JD00409. Hedin, AE, Biondi MA, Burnside RG, Hernandez G, Johnson RM, Killeen TL, Mazaudier C, Meriwether JW, Salah JE, Sica RJ, Smith RW, Spencer NW, Wickwar VB, Virdi TS (1991) Revised global model of thermosphere winds using satellite and ground-based observations. J Geophys Res 96(A5):7657–7688. https://doi.org/10.1029/91JA00251. Hedin, AE, Fleming EL, Manson AH, Schmidlin FJ, Avery SK, Clark RR, Franke SJ, Fraser GJ, Tsuda T, Vial F, Vincent RA (1996) Empirical wind model for the upper, middle and lower atmosphere. J Atmo and Solar-Terr Phys 58(13):1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0. Hedin, AE, Spencer NW, Killeen TL (1988) Empirical global model of upper thermosphere winds based on atmosphere and dynamics explorer satellite data. J Geophys Res 93(A9):9959–9978. https://doi.org/10.1029/JA093iA09p09959. Heelis, RA (2004) Electrodynamics in the low and middle latitude ionosphere: a tutorial. J Atmo and Solar-Terr Phys 66:825–838. https://doi.org/10.1016/j.jastp.2004.01.034. Heelis, RA, Kendall PC, Moffett RJ, Windle DW (1974) Electrical coupling of the E- and F-regions and it’s effect on the F-region drifts and winds. Planet Space Sci 22:743–756. https://doi.org/10.1016/0032-0633(74)90144-5. Huang, C (2018) Effects of the postsunset vertical plasma drift on the generation of equatorial spread F. Prog Earth Planet Sci 5(3). https://doi.org/10.1186/s40645-017-0155-4. Huang, C, Hairston MR (2015) The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite. J Geophys Res 120(3):2263–2275. https://doi.org/10.1002/2014JA020735. Hui, D, Fejer BG (2015) Daytime plasma drifts in the equatorial lower ionosphere. J Geophys Res 120(11):9738–9747. https://doi.org/10.1002/2015JA021838. Hysell, DL, Kudeki E (2004) Collisional shear instability in the equatorial F region ionosphere. J Geophys Res 109(A11301). https://doi.org/10.1029/2004JA010636. Ieda, A (2020) Ion-neutral collision frequencies for calculating ionospheric conductivity. J Geophys Res 125(e2019JA027128). https://doi.org/10.1029/2019JA027128. Kelley, MC, Retterer J (2008) First successful prediction of a convective equatorial ionospheric storm using solar wind parameters. Space Weather 6(S08003):28163–28170. https://doi.org/10.1029/2007SW000381. Kudeki, E, Akgiray A, Milla M, Chau JL, Hysell DL (2007) Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves. J Atmos Solar-Terr Phys 69:2416–2427. Kudeki, E, Bhattacharyya S (1999) Postsunset vortex in equatorial F-region plasma drifts and implications for bottomside spread-F. J Geophys Res 104(A12):28163–28170. https://doi.org/10.1029/1998JA900111. Maute, A, Richmond AD, Roble RG (2012) Sources of low-latitude ionospheric ExB drifts and their variability. J Geophys Res 117(A06312). https://doi.org/10.1029/2011JA017502. Murphy, JA, Heelis RA (1986) Implications of the relationship between electromagnetic drift components at mid and low latitudes. Planet Space Sci 34(7):645–652. https://doi.org/10.1016/0032-0633(86)90042-5. Navarro, LA, Fejer BG (2019) Storm-time thermospheric winds over Peru. J Geophys Res 124(12):10415–10427. https://doi.org/10.1029/2019JA027256. Navarro, LA, Fejer BG (2020) Storm-time coupling of equatorial nighttime F region neutral winds and plasma drifts. J Geophys Res 125(e2020JA028253). https://doi.org/10.1029/2020JA028253. Picone, JM, Hedin AE, Drob DP, Aikin AC (2002) NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J Geophys Res 107(A12):SIA151–SIA1516. https://doi.org/10.1029/2002JA009430. Pingree, JE, Fejer BG (1987) On the height variation of equatorial F region vertical plasma drifts. J Geophys Res 92(A5):4763–4766. https://doi.org/10.1029/JA092iA05p04763. Richmond, AD, Fang TW, Maute A (2015) Electrodynamics of the equatorial evening ionosphere: 1. importance of winds in different regions. J Geophys Res 120(3):2118–2132. https://doi.org/10.1002/2014JA020934. Rodrigues, FS, Crowley G, Heelis RA, Maute A, Reynolds A (2012) On tie-gcm simulation of the evening equatorial plasma vortex. J Geophys Res 117(A05307). https://doi.org/10.1029/2011JA017369. Scherliess, L, Fejer BG (1999) Radar and satellite global equatorial F region vertical drift model. J Geophys Res 104(A4):6829–6842. https://doi.org/10.1029/1999JA900025. Schunk, RW, Nagy AF (2009) Ionospheres: Physics, Plasma Physics, and Chemistry. Cambridge University Press, Cambridge. Shepherd, GG, Thuillier G, Gault WA, Solheim BH, Hersom C, Alunni JM, Brun J-F, Brune S, Charlot P, Cogger LL, Desaulniers D-L, Evans WFJ, Gattinger RL, Girod F, Harvie D, Hum RH, Wendall DJW, LLewellyn EJ, Lowe RP, Ohrt J, Pasternak F, Peillet O, Powell I, Rochon Y, Ward WE, Wiens RH, Wimperis J (1993) Windii, the wind imaging interferometer for the upper atmosphere research satellite. J Geophys Res 98(D6):10725–10750. https://doi.org/10.1029/93JD00227. Shidler, SA, Rodrigues FS, Fejer BG, Milla MA (2019) Radar studies of height-dependent equatorial F-region vertical and zonal plasma drifts. J Geophys Res 124(3):2058–2071. https://doi.org/10.1029/2019JA026476. Smith, JM, Rodrigues FS, de Paula ER (2015) Radar and satellite investigations of equatorial evening vertical drifts and spread F. Ann Geophys 33(11):1403–1412. https://doi.org/10.5194/angeo-33-1403-2015. Sultan, PJ (1996) Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J Geophys Res 101(A12):26875–26891. https://doi.org/10.1029/96JA00682. Thébault, E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coisson P, Civet F, Du A, Fournier A, Fratter I, Gillet N, et al. (2015) International geomagnetic reference field: the 12th generation. Earth Planet Space 67(79). https://doi.org/10.1186/s40623-015-0228-9.