On a nonlinear multigrid algorithm with primal relaxation for the image total variation minimisation
Tóm tắt
Từ khóa
Tài liệu tham khảo
R. Acar and C.R. Vogel, Analysis of total variation penalty method for ill-posed problems, Inverse Probl. 10 (1994) 1217–1229.
L. Alvarez, P.L. Lions and J.M. Morel, Image selective smoothing and edge detection by nonlinear diffusion II, SIAM J. Numer. Anal. 29 (1992) 845–866.
H.C. Andrews and B.R. Hunt, Digital image restoration (Prentice-Hall, 1977).
P. Blomgren, T.F. Chan, P. Mulet, L. Vese and W.L. Wan, Variational pde models and methods for image processing, in: Research Notes in Mathematics, 420 (Chapman & Hall/CRC, 2000) pp. 43–67.
M.M. Bronstein, A.M. Bronstein, R. Kimmel and I. Yavneh, Multigrid multidimensional scaling, Numer. Lin. Algebra Appl. (2006) to appear.
D. Calvetti, B. Lewis and L. Reichel, Krylov subspace iterative methods for nonsymmetric discrete ill-posed problems in image restoration, in: Advanced Signal Processing Algorithms, Architectures, and Implementations X, ed. F.T. Luk, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), vol. 4116 (The International Society for Optical Engineering, Bellingham, Washington, 2001).
J.L. Carter, Dual method for total variation-based image restoration, CAM report 02–13, UCLA, USA (2002); see http://www.math.ucla.edu/applied/cam/index.html.
E. Casas, K. Kunisch and C. Pola, Regularization of functions of bounded variation and applications to image enhancement, Appl. Math. Optim. 40 (1999) 229–257.
A. Chambolle, An algorithm for total variation minimization and applications, J. Math. Imaging Vis. 20 (2004) 89–97.
A. Chambolle and P.L. Lions, Image recovery via total variation minimization and related problems, Numer. Math. 76 (1997) 167–188.
R.H. Chan, T.F. Chan and W.L. Wan, Multigrid for differential convolution problems arising from image processing, in: Proc. Sci. Comput. Workshop, Springer-Verlag, eds. R. Chan, T.F. Chan and G.H. Golub, (1997) see also CAM report 97–20, UCLA, USA.
R.H. Chan, T.F. Chan and C.K. Wong, Cosine transform based preconditioners for total variation minimization problems in image processing, IEEE Trans. Image Proc., 8 (1999) pp.1472–1478; see also CAM report 97–44, UCLA.
R.H. Chan, Q.S. Chang and H.W. Sun, Multigrid method for ill-conditioned symmetric toeplitz systems, SIAM J. Sci. Comput. 19 (1998) 516–529.
T.F. Chan and P. Mulet, Iterative methods for total variation restoration, CAM report 96–38, UCLA, USA (1996); see http://www.math.ucla.edu/applied/cam/index.html.
T.F. Chan, G.H. Golub and P. Mulet, A nonlinear primal dual method for total variation based image restoration, SIAM J. Sci. Comput. 20 (6)(1999) 1964–1977.
Q.S. Chang and I.L. Chern, Acceleration methods for total variation-based image denoising, SIAM J. Sci. Comput. 25 (2003) 982–994.
K. Chen, Matrix Preconditioning Techniques and Applications, Series: Cambridge Monographs on Applied and Computational Mathematics (No. 19) (Cambridge University Press, UK, 2005).
D. Goldfarb and W.T. Yin, Second-order cone programming methods for total variation-based image restoration, SIAM J. Sci. Comput. 27 (2) (2005) 622–645.
R.C. Gonzalez and R.E. Woods, Digital image processing (Addison-Wesley, 1993).
S. Henn and K. Witsch, A multigrid approach for minimizing a nonlinear functional for digital image matching, Computing 64 (4) (1999) 339–348.
C. Frohn-Schauf, S. Henn and K. Witsch, Nonlinear multigrid methods for total variation image denoising, Comput Visual Sci. 7 (2004) 199–206.
M. Hintermüller and K. Kunisch, Total bounded variation regularization as a bilaterally constrained optimization problem, SIAM J. Appl. Math. 64 (2004) 1311–1333.
Hintermüller and G. Stadler, An infeasible primal–dual algorithm for TV-based infconvolution-type image restoration, Technical Report TR04–15, (CAAM Dept. Rice University, USA, 2004).
W. Hinterberger, M. Hintermüller, K. Kunisch, M. von Oehsen and O. Scherzer, Tube methods for BV regularization, J. Math. Imaging Vis. 19 (2003) 219–235.
K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation for image restoration, Math. Mod. Numer. Anal. (M2AN) 33 (1) (1999) 1–21.
T. Kärkkäinen and K. Majava, Nonmonotone and monotone active set methods for image restoration. II. Numerical results, J. Optim. Theory Appl. 106 (2000) 81–105.
T. Kärkkäinen, K. Majava and M.M. Mäkelä, Comparison of Formulations and Solution Methods for Image Restoration Problems, Series B Report No. B 14/2000 (Department of Mathematical Information Technology, University of Jyväskylä, Finland, 2000).
S.H. Lee and J.K. Seo, Noise removal with Gauss curvature driven diffusion, IEEE Trans. Image Process 14 (7) (2005) 904–909.
Y.Y. Li and F. Santosa, A computational algorithm for minimizing total variation in image restoration, IEEE Trans. Image Process 5 (1996) 987–995.
S. Nash, A multigrid approach to discretized optimisation problems, J. Opt. Methods Softw. 14 (2000) 99–116.
S. Osher and A. Marquina, Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal, SIAM J. Sci. Comput. 22 (2)(2000) 387–405.
M.J.D. Powell, The NEWUOA software for unconstrained optimization without derivatives, NA2004/08 (Cambridge University, UK, 2004).
W.H. Press, et al., Numerical Recipes in C (Cambridge University Press, UK, 1992).
E. Radmoser, O. Scherzer and J. Schöberl, A Cascadic Algorithm for Bounded Variation Regularization, SFB-Report No. 00–23 (Johannes Kepler University of Linz, Austria, 2000).
K.L. Riley, Two-Level Preconditioners for Regularized Ill-Posed Problems, PhD thesis (Montana State University, USA, 1999).
L.I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992) 259–268.
G. Sapiro, Geometrical Differential Equations and Image Analysis (Cambridge University Press, UK, 2001).
J. Savage and K. Chen, An improved and accelerated nonlinear multigrid method for total-variation denoising, Int. J. Comput. Math. 82 (8) (2005) 1001–1015.
K. Stuben, Algebraic Multigrid Methods, in: Multigrid, eds. U. Trottenberg, C. Oosterlee and A. Schuller (Academic, London, 2001).
C.R. Vogel, A multigrid method for total variation-based image denoising, in: Computation and Control IV, 20, Progress in Systems and Control Theory, eds. K. Bowers and J. Lund (Birkhauser, 1995).
C.R. Vogel, Negative results for multilevel precondtioners in image deblurring, in: Scale–Space Theories in Computer Vision, ed. M. Nielson et al. (Springer, Berlin Heidelberg New York, 1999) pp. 292–304.
C.R. Vogel and M.E. Oman, Iterative methods for total variation denoising, SIAM J. Sci. Statist. Comput. 17 (1996) 227–238.