On a modification of the FitzHugh-Nagumo neuron model

Pleiades Publishing Ltd - Tập 54 - Trang 443-461 - 2014
S. D. Glyzin1, A. Yu. Kolesov1, N. Kh. Rozov2
1Faculty of Mathematics, Yaroslavl State University, Yaroslavl, Russia
2Faculty of Mechanics and Mathematics, Moscow State University, Moscow, Russia

Tóm tắt

A singularly perturbed system of ordinary differential equations with a fast and a slow variable is proposed, which is a modification of the well-known FitzHugh-Nagumo model from neuroscience. The existence and stability of a nonclassical relaxation cycle in this system are studied. The slow component of the cycle is asymptotically close to a discontinuous function, while the fast component is a δ-like function.

Tài liệu tham khảo

R. FitzHugh, “Impulses and physiological states in theoretical models of nerve membrane,” Biophys. J. 1, 445–466 (1961). A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952). J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse transmission line simulating nerve axon,” Proc. IRE 50, 2061–2070 (1962). S. Hykin, Neural Networks: A Comprehensive Foundation (Prentice Hall, Englewood Cliffs, N.J., 1998; Williams, Moscow, 2006). E. M. Izhikevich, Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (MIT Press, Cambridge, Mass., 2007). E. F. Mishchenko and N. Kh. Rozov, Differential Equations with Small Parameters and Relaxation Oscillations (Nauka, Moscow, 1975; Plenum, New York, 1980). E. F. Mishchenko, Yu. S. Kolesov, A. Yu. Kolesov, and N. Kh. Rozov, Periodic Motions and Bifurcation Processes in Singularly Perturbed Systems (Fizmatlit, Moscow, 1995) [in Russian]. A. N. Tikhonov, “Systems of differential equations with small parameters multiplying the derivatives,” Mat. Sb. 31, 575–586 (1952). S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Buffer phenomenon in neurodynamics,” Dokl. Math. 85, 297–300 (2012). S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Discrete autowaves in neural systems,” Comput. Math. Math. Phys. 52, 702–719 (2012). S. D. Glyzin, A. Yu. Kolesov, and N. Kh. Rozov, “Relaxation self-oscillations in Hopfield networks with delay,” Izv. Math. 77, 271–312 (2013).